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The utilization of symbols such as words and numbers as mental tools endows humans with unrivalled cognitive
flexibility. In the number domain, a fundamental first step for the acquisition of numerical symbols is the semantic
association of signs with cardinalities. We explored the primitives of such a semantic mapping process by recording single-
cell activity in the monkey prefrontal and parietal cortices, brain structures critically involved in numerical cognition.
Monkeys were trained to associate visual shapes with varying numbers of items in a matching task. After this long-term
learning process, we found that the responses of many prefrontal neurons to the visual shapes reflected the associated
numerical value in a behaviorally relevant way. In contrast, such association neurons were rarely found in the parietal
lobe. These findings suggest a cardinal role of the prefrontal cortex in establishing semantic associations between signs
and abstract categories, a cognitive precursor that may ultimately give rise to symbolic thinking in linguistic humans.
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Introduction

Humans and animals share an evolutionarily old quantity
representation system that allows the estimation of set size or
number of events [1]. The assessment of numerical informa-
tion is advantageous for the individual’s fitness. This is
particularly evident in social interactions (fight or flight
decisions in contests) [2], foraging (exploiting the richer food
source) [3], and parenting (discrimination of offspring) [4].
Quantity representations arise spontaneously without train-
ing as has been shown numerous times in monkeys [3] and
human infants [5,6], supporting the idea that numerical
competence is an ontogenetically and phylogenetically early
faculty. Nonverbal numerical cognition, however, is limited to
approximate quantity representations [1,7] and rudimentary
arithmetic operations [5,6,8,9]; precise number representa-
tions and exact calculation are beyond its reach.

In contrast, humans familiar with number symbols are able
to grasp exact cardinalities and to execute even the most
abstract calculations. Humans learn to use number symbols as
mental tools during childhood. Prior to the utilization of
signs as numerical symbols [10], long-term associations
between initially meaningless shapes (that become numerals)
and inherently semantic numerical categories must inevitably
be established [11,12]. Associations between shapes and
quantities, a necessary first step towards the utilization of
number symbols in linguistic humans, can even be mastered
by animals [13–16].

Several studies in humans point to the prefrontal cortex
(PFC) and the intraparietal sulcus (IPS) as key structures for
both non-symbolic [17,18] and symbolic quantity information
[18–20]. In monkeys, it has been shown that potentially
homolog brain areas are involved in processing non-symbolic
numerosity [21–26]. These studies support the hypothesis of a
phylogenetic precursor system in monkeys on which higher,
verbal-based numerical abilities in adult humans build up [27].

If the precursor hypothesis holds true, the same network that is
involved in quantity estimation in nonhuman primates should
also be engaged in the association of visual shapes with
numerical categories. Here, we test this prediction by inves-
tigating whether single cells associate approximate numerosity
representations with symbolic-like representations, and if so,
what the respective contributions of the prefrontal and
parietal cortices in this mapping process could be.
To that aim, we trained monkeys to assign visual shapes to

numerical categories and recorded from single cells in both
candidate regions. We report that many neurons in the PFC
encoded the learned numerical value of a visual shape. In
contrast, such association neurons were rarely found in the
parietal lobe. Overall, the results suggest that the PFC is the
prime source for the linking of signs to numerical categories
in monkeys and may serve as a neuronal precursor for
number symbol encoding.

Results

Behavior
We trained two rhesus monkeys in a delayed match-to-

sample protocol to discriminate small numerosities (one to
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four) in multiple-dot patterns (Figure 1A; dot protocol). The
monkeys had to judge whether two successive task periods
(first sample, then test) separated by a 1-s delay showed the
same numerosity. If so, the animals had to release a lever. In a
second step, the monkeys learned over months to associate
visual shapes (Arabic numerals) with the numerosity in
multiple-dot displays, i.e., Arabic numeral 1 was associated
with one dot, numeral 2 was associated with two dots, and so
on (Figure 1B; shape protocol). Finally, both protocols were
presented in a randomly alternating fashion within a given
session.

We ensured that non-numerical parameters in the dot
protocol could not be used by the monkeys to solve the task
by varying and controlling low-level visual features. For each
session, 100 different images per numerosity were generated
with pseudo-randomly varied visual properties. Sample and
test stimuli were never identical. All four quantities were
presented in each session with one standard and one control
condition. Different control conditions were applied day by
day. Controls in the dot protocol included dot displays with
constant circumference, linear configuration, and constant
density across all presented quantities (see Figure 1C). To
force the monkeys to generalize to the overall sign character-
istics in the shape protocol, the numeral shapes were varied
in size, position, and font. The font ‘‘Arial’’ was used for the
standard condition; fonts ‘‘Times New Roman,’’ ‘‘Souvenir
BT,’’ and ‘‘Lithograph Light,’’ were used in control conditions
(see Figure 1D). The test stimulus for the shape protocol
consisted of sets of black dots, equivalent to the dot protocol.
Trials of the standard and control conditions as well as the
dot and shape protocols were pseudo-randomly intermingled
and appeared with equal probabilities in each session.

Both monkeys learned reliably to associate numerical
values with the visual shape of numerals. Average perform-
ance in the dot protocol (Figure 2A and 2B) and the shape
protocol (Figure 2C and 2D) was comparable (87% and 88%,
respectively) and significantly better than chance for all
tested quantities (p , 0.0001, binomial test). The numerical
size and distance effect [22] could be observed in both
protocols, irrespective of whether the standard or control
condition was applied (see Figure S1). This suggests that the

monkeys were indeed judging the direct and associated
numerical values.

Neuronal Responses in PFC
We recorded 692 randomly selected neurons from the

lateral PFC of the monkeys while they performed the tasks.
Intermingled presentation of both protocols during each
session allowed us to investigate individual neurons’ re-
sponses to both dot and shape protocols. Many neurons were
selective to numerical category and discharged strongest to
specific (direct or associated) numerical values, irrespective of
the protocol. Neuron 1, in Figure 3A–3E, for example, showed
a maximum response to numerosity two (the neuron’s
preferred numerosity) in the early sample phase, and a
progressive drop-off with increasing numerical distance from
the preferred numerosity in the dot protocol (Figure 3A). The
same neuron preferred the same (associated) numerical value
(i.e., two) in the shape protocol (Figure 3B) and had an
equivalent tuning function (Figure 3C). Neuron 2, in Figure
3F–3J, preferred numerosity four in both the sample and
delay phase in the dot protocol (Figure 3F). The same neuron
exhibited a remarkably similar temporal discharge pattern to

Figure 1. Task Protocols

(A) Dot protocol designed as delayed match-to-sample task. The
monkeys were required to release a lever if sample and test displays
contained the same number of items, or to keep holding it otherwise
(probability ¼ 0.5). The dots’ position and size were varied between
sample and test display and changed in each trial.
(B) Shape protocol designed as delayed association task. Task conditions
were identical to those of the dot protocol, but during the sample period
the numerical information was cued by an Arabic numeral. The numerals’
size and position changed in each trial.
(C and D) Standard (first row) and control (second to fourth row) stimuli.
(C) In the dot protocol, we controlled for non-numerical cues (dot
circumference, area, configuration, and density). (D) Four different fonts
(‘‘Arial’’ in the standard protocol; ‘‘Times New Roman,’’ ‘‘Souvenir BT,’’
and ‘‘Lithograph Light’’ in the controls) were presented in the shape
protocol.
doi:10.1371/journal.pbio.0050294.g001
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Author Summary

We use symbols, such as numbers, as mental tools for abstract and
precise representations. Humans share with animals a language-
independent system for representing numerical quantity, but
number symbols are learned during childhood. A first step in the
acquisition of number symbols constitutes an association of signs
with specific numerical values of sets. To investigate the single-
neuron mechanisms of semantic association, we simulated such a
mapping process in rhesus monkeys by training them to associate
the visual shapes of Arabic numerals with the numerosity of
multiple-dot displays. We found that many individual neurons in the
prefrontal cortex, but only a few in the posterior parietal cortex,
responded in a tuned fashion to the same numerical values of dot
sets and associated shapes. We called these neurons association
neurons since they establish an associational link between shapes
and numerical categories. The distribution of these association
neurons across prefrontal and parietal areas resembles activation
patterns in children and suggests a precursor of our symbol system
in monkeys.



the signs associated to specific numerical values in the shape
protocol (Figure 3G). For both protocols, the neuron showed
monotonically increasing tuning functions (Figure 3H).
Neuron 3, in Figure 3K–3O, showed strikingly similar
responses during the memory period in both the dot (Figure
3K) and shape protocol (Figure 3L), with a preferred
numerical value two; the tuning functions obtained with the
dot and the shape protocols were almost identical (Figure
3M).

For a quantitative analysis of the neurons’ selectivity to
numerical values, we first calculated a two-way analysis of
variance (ANOVA) (with factors numerical value [i.e., 1, 2, 3,
4] 3 stimulus condition [i.e., standard versus control], p ,

0.05) separately for the dot and shape protocols. During the
sample period, 263 (263/692, or 38%) neurons were selective
for shapes and 229 (229/692, or 33%) for the number of dots
irrespective of whether standard or control conditions were
used (significance only for factor ‘‘numerical value’’; no other
significant effects). During the delay period, 297 (297/692, or
43%) and 300 (300/692, or 43%) neurons were significantly
tuned to shapes and the number of dots, respectively. We
found 210 neurons during the sample and/or delay phase that
were selective only to factor ‘‘numerical value’’ in both
protocols, irrespective of the displays’ visuospatial properties.
For all quantities from one to four, we found neurons with
the same preferred numerosities and associated numerical
values. The observed frequency of those neurons was
significantly higher compared to chance occurrence (p ,

0.001, binomial test; Figure S5; see Materials and Methods for

a description of chance level calculation). More precisely,
more neurons exhibited the same preferred numerical value
in the dot and shape protocols than expected assuming
independence between the encoding of the two stimulus
protocols.

Neuronal Association of Visual Shapes and Numerical
Values in PFC
Neurons that were ANOVA-selective in both protocols

(especially those with the identical preferred numerical value
in both protocols) constitute a potential neural substrate for
long-term numerical associations. In addition to mere
selectivity in the dot and shape protocols, however, neurons
should have similar tuning functions for the (direct and
associated) numerical values in both protocols. To test this
hypothesis, and to investigate the time course of association,
we performed a sliding cross-correlation analysis between
each neuron’s tuning functions in the shape and dot
protocols for all 210 ANOVA-selective cells and derived the
cross-correlation coefficients (CCs; see Figures S2–S4 for
details). The significance of the CCs was evaluated by using a
sliding receiver operating characteristic (ROC) analysis. For
each neuron, we derived the ROC values of the difference
between CCs and the shuffle predictors (SPs, which constitute
chance CCs) in 25-ms time steps [28] (see Materials and
Methods). Based on this analysis, 157 cells (157/692, or 23%)
were significantly correlated and classified as ‘‘association
neurons.’’ For instance, neuron 1 associated between visual
shapes and numerical values during the sample onset phase,
i.e., 175 ms after stimulus onset and, taking its response
latency of 120 ms into account, 55 ms after its earliest visual
response (Figure 3D and 3E). The associative neuronal
responses of neuron 2 (Figure 3I and 3J) ranged from 250
ms (latency-corrected: 11 ms) after stimulus onset to 50 ms
before the end of the delay period. As an example of a late-
associating cell, neuron 3 associated throughout the entire
memory phase (see Figure 3N and 3O). The time course of
association shown in Figure 4A for the entire sample of
association neurons revealed many neurons that associated
the numerical values of shapes and dots early after sample
onset. While individual cells coded the (direct and associated)
numerical values during specific time phases in the trial
(represented by the black bars in Figure 4A), the neuronal
population represented the numerical association through-
out the entire trial. When corrected for response latency,
about half of the association neurons started to associate
numerical values within the first 200 ms after neuronal
response onset. One hundred and thirteen neurons began to
associate during the sample phase, and 44 neurons during the
delay phase (Figure 4B).
Interestingly, the tuning functions of association neurons

showed a distance effect [22] for both protocols, i.e., a drop-
off of activation with increasing numerical distance from the
preferred numerical value (numerical distance 1 versus 3, dot
protocol, p , 0.001, n¼ 104; shape protocol, p , 0.01, n¼ 91;
Wilcoxon signed-rank test, two-tailed; see single-cell exam-
ples in Figure 3C, 3H, and 3M, and population analysis in
Figures 4C and S6 ). The distance effect found in the shape
protocol indicates that association neurons responded as a
function of numerical value rather than visual shape per se.
However, the neuronal response drop-off between the
preferred and second-preferred numerical values was larger

Figure 2. Behavioral Performance

(A and B) Dot protocol.
(C and D) Shape protocol.
The curves show how often the monkeys judged the first test and
sample numerosity to be equal. The numerical value in the first test
display is shown on the x-axis. Each color stands for a certain numerosity
shown during the sample period. Average performance for each
numerosity is shown in gray as percentage correct (chance level¼ 50%).
doi:10.1371/journal.pbio.0050294.g002
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Figure 3. Neural PFC Responses

(A–E) Neuron 1 showed highest firing rates for numerical value two in the dot (A) and shape (B) protocols in the early sample phase. Top panels in (A)
and (B) show dot raster histograms (each dot represents an action potential); bottom panels are the corresponding color-coded spike density
histograms (averaged and smoothed with a 100-ms Gaussian kernel for illustrative purposes only). The first 500 ms indicates the fixation period. Black
vertical lines mark sample onset (500 ms) and offset (1,300 ms). (C) Tuning functions in the sample period for the dot and shape protocols, calculated
from the raw firing rates in a 400-ms latency shifted window. (D) Time course of original CCs (red) and chance CCs (SPs, blue). (E) Time course of
discriminability between CCs and SP quantified as the AUROC. The horizontal bar above the x-axis indicates the time interval of significant cross-
correlation between tuning to the dot and shape protocols; in this period, the neuron associated numerical values in the two protocols. The black
dashed line depicts the threshold (mean of ROC values derived during fixation period 6 three standard deviations). The gray dashed line represents
chance level (0.5).
(F–J) Neuron 2 exhibiting four as preferred numerical value in the sample and delay period. Same layout as in (A–E); tuning functions were derived from
the second ANOVA window of the sample period. (I and J) Neuron 2 associated numerical values in both protocols throughout the entire sample and
delay period.
(K–O) Neuron 3 exhibited two as preferred numerical value in the delay period. Same layout as in (A–E); tuning functions were derived from the second
ANOVA window of the delay period.
doi:10.1371/journal.pbio.0050294.g003
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in the shape protocol (50%) than in the dot protocol (39.8%)
(p ¼ 0.016, n ¼ 157, Wilcoxon signed-rank test, two-tailed).
This might indicate a more precise encoding of numerical
values represented by signs than by sets of dots.

Error Trial Analysis of PFC Neurons
Is the association of numerical values by single PFC neurons

really relevant for the monkeys’ behavior? If association
neurons constitute a neuronal correlate for the monkeys’
ability to link signs with numerosities, the tuning correlations
for both protocols should be weakened whenever the monkeys
failed to associate visual shapes with their corresponding
numerosities in error trials. To address this issue, we
calculated the CCs of association neurons between correct
trials in the dot protocol and error trials in the shape
protocol. Because of the monkeys’ low overall error rates,
error trials were only available for a subset of numerical values
(e.g., 2, 3, and 4) for many neurons. Only neurons recorded
during errors to two or more numerical values were included
into the error trial analysis. This criterion was fulfilled by 153
out of the 157 association neurons. As shown in Figure 5A and
5B, the correlation patterns for individual neurons were
disturbed in error trials, and the mean population CCs were
significantly decreased in error trials during and after cue
presentation (p , 0.001, n ¼ 153, Wilcoxon signed-rank test,
two-tailed). As expected, baseline correlation during the
fixation period was unaffected (p ¼ 0.44). These findings
strongly argue for association neurons as a neuronal substrate
of the semantic mapping processes between signs and
categories.

Comparison of PFC and IPS
During PFC recordings, we simultaneously recorded from

437 neurons in the fundus of the IPS (see Figure 6) and
analyzed the neurons’ responses in the same manner (i.e.,
two-factor ANOVA and cross-correlation analysis). In the IPS,
we found many neurons encoding either the visual shapes or
the numbers of dots separately (67/437, or 15%, and 62/437,
or 14%, respectively, during the sample period and 58/437, or
13%, and 83/437, or 19%, respectively, during the delay
period; see Figure 6B for a summary of sample and delay).
The proportion of neurons showing stimulus condition and/
or interaction effects in the dot and shape protocols was
significantly higher in the IPS (118/437, or 27%, and 107/437,
or 24%) than in the PFC (119/692, or 17%, and 133/692, or
19%) (p , 0.001 and p , 0.05, respectively; Chi-square test).
This argues for a more abstract encoding of numerical values
in the PFC and a more sensory-driven activity in the IPS.
In contrast to the abundance of significantly tuned IPS

neurons for the shape and dot protocols, only very few IPS
neurons were selectively tuned to both protocols (n ¼ 19);

Figure 4. Association Neurons in the PFC

(A) Diagram showing the temporal evolution of significant (as
determined by a sliding ROC analysis; see Materials and Methods)
cross-correlations between the tuning functions of 157 individual
neurons to the dot and shape protocols. Top panel: Number of
association neurons as a function of time. Bottom panel: Time course
of association of each individual neuron. Each horizontal line corre-

sponds to one single neuron. Periods of significant correlation are
marked in black. Data are sorted by the first time of significant cross-
correlation. Time is aligned to the midpoint of the 100-ms sliding
windows. Data from example neurons 1–3 in Figure 3 are indicated by
gray triangles.
(B) Distribution of response-latency-corrected time points at which
neurons started to associate numerical values.
(C) Population tuning curves. Normalized discharges and averaged
tuning curves of all association neurons to the dot (gray) and shape
(black) protocols. Data are plotted as a function of numerical distance
from the preferred numerical value.
doi:10.1371/journal.pbio.0050294.g004
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even fewer turned out to have significant correlations (8/437;
Figure 6B). Compared to the PFC, for the IPS, the proportion
of association cells from the pool of all selective cells was
significantly lower (p , 0.001, Chi-square test; Figure 6D).
Nevertheless, the proportion of neurons with identical
preferred numerical values in both protocols was slightly
higher than expected by chance (p , 0.001, binomial test) (see
Figure S5 and Materials and Methods for calculation of
chance level and the distribution of preferred numerical
values).

Correlation time course and correlation strength (as
measured by the ROC values) were fundamentally different
between PFC and IPS neurons (Figure 7). In the PFC, ROC
values showed a sharp increase right after sample onset and
remained elevated throughout the entire trial (Figure 7A). In
the IPS, however, neuronal association was weak and
occurred much later during the trial (Figure 7B); ROC values
showed an increase around the end of the sample and delay
period, but in contrast to values for the PFC, the IPS values
were low during both periods. In summary, only PFC neurons

seemed to be crucially involved in associating shapes with
numerical magnitudes.

Discussion

We trained monkeys to associate quantitative categories
with inherent meaning (i.e., numerosities) with a priori
meaningless visual shapes. After this long-term learning
process was completed, a large proportion of PFC neurons
(23%) encoded plain numerical values, irrespective of
whether they had been presented as a specific number of
dots or as a visual shape. The activity of association neurons
predicted the monkeys’ judgment performance; if the
monkeys failed to match the correct number of dots to the
learned shapes, discharge patterns were drastically de-
correlated. The population of these PFC cells represented
the numerical association throughout the entire trial,
providing crucial information to bridge the association over
time. In contrast, only 2% of all recorded IPS neurons
associated signs with numerosities. These findings suggest the
PFC as the prime source in the mapping process of visual
shapes to cardinalities.

Semantic Associations in the PFC
Previous studies showed that neurons in the PFC encode

learned associations between two purely sensory stimuli
without intrinsic meaning (e.g., the association of a certain
color with a specific sound, or pairs of pictures) [29–31]. In
the anterior inferotemporal cortex, Miyashita and co-
workers found ‘‘pair-coding neurons’’ that responded to
arbitrary pairs of images monkeys learned to match in a
pair-association task [32], and evidence that the PFC is
important for active retrieval of these associative repre-
sentations [33]. Here we show, to our knowledge for the
first time, that neurons in the PFC represent semantic long-
term associations not only between pairs of pictures, but
between arbitrary shapes and systematically arranged
categories with inherent meaning (i.e., the ordered cardin-
alities of sets). Our results suggest that the PFC may not
only control the retrieval of long-term associations, but
may in fact constitute a cardinal processing stage for
abstract semantic associations. The prefrontal region is
strategically situated for such associations [34]; it receives
input from both the anterior inferotemporal cortex, which
encodes shape information [35], and the posterior parietal
cortex, which contains numerosity-selective neurons
[23,24].
The described association neurons and their response

characteristics suggest such cells as neuronal correlates of
semantic association. We observed that many neurons
associated visual shapes with numerical values transiently,
and not until the end of the delay period (Figure 4A), whereas
prospective activity typically dominates near the end of the
delay [29]. More importantly, a high proportion of neurons
associated numerical values in the shape and dot displays
right after sample onset (see Figure 4A and 4B). This argues
for a direct involvement of these neurons in linking
numerical values to shapes, rather than encoding upcoming
match stimuli in a prospective manner. Finally, an analysis of
error trials (see Figure 5) revealed that tuning correlation
between both protocols was weakened whenever the monkeys
failed to associate visual shapes with their corresponding

Figure 5. Error Trial Analysis for PFC Neurons

(A) Temporal profile of CCs during correct trials (upper panel) and error
trials (bottom panel) for the same association neurons (running average
rectangular filter, window size five data points). Neurons are sorted by
time of maximal correlation.
(B) Time course of mean CCs across cells for correct and error trials
(running average rectangular filter, window size five data points; shaded
areas 6 standard error of the mean).
doi:10.1371/journal.pbio.0050294.g005
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numerosities. This again provides evidence that association
neurons constitute a neuronal correlate for the monkeys’
ability to link signs with numerosities.

Hypothetical Formation of Association Neurons
While quantity representations are spontaneously devel-

oped [3,6], associations between visual shapes and numerical
categories clearly have to be learned by mapping shape
representations onto numerical categories. This neuronal
learning could start with two classes of PFC cells: one class
encoding visual characteristics of shapes (input possibly via
inferotemporal cortex [35]), the other class representing
numerical information most likely received from the IPS
[23,24]. According to the Hebbian learning rule [36], the
connections may be strengthened between these two classes
of neurons so that cells encoding matching pairs (e.g., Arabic
numeral 3 and three dots) are interconnected and become
associative. This learning behavior could potentially be
modeled via a recurrent neuronal network as has been done
for pair-association encoding in inferotemporal neurons [37]

or for somatosensory parametric working memory in PFC
[38].

Comparison of Human and Monkey Data
Even though numerosity-selective neurons in IPS are

relatively abundant and encode numerical information ear-
lier than PFC neurons [23], association neurons were
surprisingly rare in the parietal lobe. Moreover, IPS neurons
differentiated to a larger extent between the sensory features
of the visual displays; they responded less abstractly than PFC
neurons, which generalized across visual properties. At first
glance, the sparseness of association IPS neurons in the
nonhuman primate seems to be at odds with the well-known
role of the posterior parietal cortex in adult humans for both
non-symbolic [17,18] and symbolic numerical cognition [18–
20]. Beyond possible species-specific differences between
humans and monkeys, this difference might also be the
consequence of training duration; our monkeys were trained
for few months to match numerosities with visual shapes,
whereas humans acquire symbols over years. Because of the

Figure 6. Quantitative Summary and Comparison of Neuronal Response Classes in PFC and IPS

(A and B) Venn diagrams summarizing the results from the two-factor ANOVA and cross-correlation analysis in the PFC (A) and IPS (B). Data from the
sample and delay period are combined. Numbers correspond to the numbers of neurons selective for each class.
(C) Lateral view of a monkey brain. Circles represent schematic locations of recording sites in the frontal and parietal lobe. AS, arcuate sulcus; CS, central
sulcus; PS, principal sulcus; STS, superior temporal sulcus; LS, lateral sulcus.
(D) Frequency of association neurons. Proportions correspond to the added numbers of neuron classes (i.e., association neurons, ANOVA-selective
neurons for both protocols, and ANOVA-selective neurons for shape or dot protocol; ***, p , 0.001).
doi:10.1371/journal.pbio.0050294.g006
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monkeys’ inferior proficiency, it is likely that the shape–
numerosity association was not automatically executed in the
monkey brain, but required a strong involvement of the PFC
in order to manage the high cognitive demands [34].

Support for this assumption comes from recent functional
magnetic resonance imaging studies with human children. In
contrast to adults, preschoolers lacking proficiency with
number symbols show elevated PFC activity when dealing
with symbolic cardinalities [39–41]. Only with age and
proficiency does the activation seem to shift to parietal areas.
This frontal-to-parietal shift has been interpreted as being a
result of increasing automaticity in number tasks. This shift
of symbolic associations to the parietal lobe could release the

limited cognitive resources of PFC for new demanding tasks
[34]. The PFC could, thus, be ontogenetically and phyloge-
netically the first cortical area establishing semantic associ-
ations, which might be relocated to the parietal cortex in
human adolescents [27,42] in parallel with the maturing
language capabilities [43] that endow our species with a
sophisticated symbolic system [42].

A Putative Precursor for Symbolic Number
Representations
During cultural evolution, humans invented number sym-

bols as mental tools. Number symbols endow our species with
an exact understanding of cardinality and the ability to
execute the most complicated calculations. Given that the first
ancient number symbols have been dated back to only a couple
of thousand years ago [44], it is impossible that the human
brain has developed areas with distinct, culturally dependent
number symbol functions [27]. It is more parsimonious to
assume that existing brain structures, originally evolved for
other purposes, are reused and built upon in the course of
continuing evolutionary development (by a process called
‘‘exaptation’’ [45]), an idea captured by the ‘‘redeployment
hypothesis’’ [46] (also termed ‘‘recycling hypothesis’’ [27]).
According to this hypothesis, already existing simpler networks
are largely preserved, extended, and combined as networks
become more complex, instead of there being a de novo
creation of intricate structures [47]. In the number domain,
evidence suggests that existing neuronal components (located
in PFC and IPS)—originally developed to serve nonverbal
quantity representations—are used for the new purpose of
number symbol encoding, without disrupting their participa-
tion in existing cognitive processes [18]. While monkeys use the
PFC and IPS for non-symbolic quantity representations [23],
only the prefrontal part of this network is engaged in semantic
shape–number associations. Interestingly, this pattern of brain
area use seems to be preserved in human children [39–41].
Moreover, we found that numerical values represented by signs
were encoded more selectively as than analog set sizes. This
sharpening of the tuning functions for signs was predicted by a
recent network model [48] and might indicate the advent of a
digital representation via symbol-like signs in the primate
brain. We speculate that our data in the monkey provide a first
glimpse of redeployment of the PFC for symbolic-like learning,
thus paving the way for the neuronal quantity network to
encode real number symbols in language-endowed humans.

Materials and Methods

Behavioral protocol. We trained two monkeys to match either a set
of dots with another set of dots (delayed match-to-sample task, or dot
protocol; see Figure 1A) or a visual shape with a set of dots (delayed
association task, or shape protocol; see Figure 1B). Stimuli were sets
of black dots or black Arabic numerals pseudo-randomly varying in
size and position and displayed on a gray background. A trial started
when the monkey grasped a lever and fixated (6 1.758 of visual angle,
monitored with an infrared eye tracking system) on a central target.
After a monkey fixated for 500 ms, the sample appeared for 800 ms
(multiple-dot display in the dot protocol; Arabic numeral in the
shape protocol). The monkey then had to maintain fixation until the
end of a 1,000-ms delay period, after which the test stimulus was
presented (always a multiple-dot pattern). In 50% of cases the test
stimulus was a match, i.e., it showed the same number of dots as cued
during the sample period by a multiple-dot pattern or a shape. In the
other 50% of cases the first test stimulus was a nonmatch, which
showed—with equal probabilities—either a higher or lower numer-
osity than the sample display. After a nonmatch test stimulus, a

Figure 7. Time Course of Association Strength

The association strength (measured as the AUROC) of 157 association
PFC (A) and eight association IPS (B) neurons. AUROC values were sorted
independently for each time bin. Higher AUROC values indicate stronger
association, i.e., more similar tuning functions to the dot and shape
protocols. Black lines correspond (from right to left) to sample onset and
offset. Time is aligned to the midpoint of the sliding windows.
doi:10.1371/journal.pbio.0050294.g007
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second test stimulus appeared that was always a match. To receive a
fluid reward, monkeys were required to release the lever as soon as a
match appeared. Trials were pseudo-randomized and balanced across
all relevant features (e.g., match versus nonmatch, dot versus shape
protocol, standard versus control, etc.).

Stimuli. The stimuli for the dot protocol were randomly arranged
black dots displayed on a gray background (diameter 68 of visual
angle). For each session, 100 different images per numerosity were
generated with pseudo-randomly varied visual features: the diameter
of the dots ranged from 0.5 to 0.98 of visual angle, and their positions
were restricted only by the border of the gray background circle and
the fact that they were not allowed to overlap each other. Sample and
test stimuli were never identical. All four quantities were presented in
each session with one standard and one control condition. Controls
in the dot protocol included dot displays with constant circum-
ference (the summed circumference of the dots was constant, such
that dot size decreased as dot number increased, as opposed to in the
standard condition), linear configuration (i.e., all dots were linearly
arranged), and constant density (i.e., constant mean distance between
dots) across all presented quantities (see Figure 1C). These measures
prevented the monkeys from memorizing visual patterns instead of
using the numerical information to solve the task. For the shape
protocol, a sample stimulus consisted of a black Arabic numeral on a
gray background circle. Font size (range 26 to 42 points) and position
of the shapes were varied pseudo-randomly from trial to trial. The
font ‘‘Arial’’ was used for standard trials; ‘‘Times New Roman,’’
‘‘Souvenir BT,’’ and ‘‘Lithograph Light’’ were control fonts (see
Figure 1D). The test stimulus for the shape protocol consisted of sets
of black dots in the style of the dot protocol. Standard and control
trials as well as trials from the dot and shape protocols were pseudo-
randomly intermingled and appeared with equal probabilities in each
session. These measures ensured that the monkeys generalized to the
overall shape characteristics instead of memorizing local features.

Recording techniques. Recordings were made from one left and
one right hemisphere of the ventral convexity of the lateral PFC and
in the fundus of the IPS of two rhesus monkeys (Macaca mulatta) in
accordance with the guidelines for animal experimentation approved
by the Regierungspräsidium Tübingen, Germany. These areas were
chosen because in preceding studies [21–26] they were shown to
contain visual numerosity-selective cells and, from human studies, are
known to be activated during numerosity-related tasks [17–20,39–41].
Single-cell recordings were made with arrays of tungsten electrodes
(1–2 MOhm impedance). Recording sites were localized using
stereotaxic reconstructions from magnetic resonance images. Re-
cordings in the IPS were done exclusively at depths from 9 to 13 mm
below the cortical surface (Horsley-Clark coordinates, anterior/
posterior,�5 mm or 0 mm) [24]. No attempts were made to preselect
neurons. Off-line sorting was routinely applied to separate single
units. As of the publication of this article, both monkeys are still
engaged in discrimination tasks.

Response latency. To determine the neuronal response latencies,
averaged spike density histograms were derived with a 1-ms
resolution, smoothed by a sliding window with a kernel bin width
of 10 ms for all sample stimuli. A 200-ms time window before stimulus
onset was used as baseline. If five consecutive time bins after stimulus
onset reached a value higher than the maximum of the baseline
period, response latency was defined by the first of these time bins. A
default latency of 100 ms was used if no value could be calculated.

ANOVA. Putative association neurons were preselected based on a
two-factor ANOVA. To account for different temporal response
phases, spike rates were tested in four adjacent, nonoverlapping time
windows. The first window (400 ms) started at the beginning of the
sample period and was shifted by the neurons’ response latencies. The
second window (400 ms) followed right after the first one and covered
the rest of the sample period. The subsequent two windows (450 ms
each) covered the first and second part of the delay period. Selectivity
for numerical values was calculated based on these discharge rates
separately for the dot and shape protocols using a two-way ANOVA
with main factors ‘‘numerical value’’ (one to four) and ‘‘stimulus
condition’’ (standard and control). Cells were considered to be
numerosity-selective only if they showed a significant main effect to
‘‘numerosity’’ in one of the four analysis windows, but no significant
‘‘stimulus condition’’ or interaction effect.

Population tuning functions and normalization. To derive averaged
numerosity-filter functions, the tuning functions of individual
neurons were normalized by dividing all spike rates of the tuning
functions by the maximum activity, thus setting the activity at the
preferred numerical value to 100%. Pooling the resulting normalized
tuning curves across the entire population of association cells
resulted in averaged numerosity-filter functions (see Figures 4C,

S6A, and S6B). The population tuning functions were calculated for
the time windows during which association neurons were significantly
tuned to numerosity as tested by the two-way ANOVA. If neurons
were significantly tuned in more than one window the analysis was
restricted to the window with the smallest p-value.

Correlation analysis. The correlation analysis aimed to extract
tuning similarities of individual neurons to numerical values in the
shape and dot protocols. Figure S2 describes the application flow of
the analysis. For each protocol (Figure S2A and S2B), eight trials per
numerical value were chosen in a random manner (Figure S2C).
Tuning functions were built with the averaged spike rates of these
trials (Figure S2D and S2E). Next, the CCs between these tuning
functions were calculated. The same subset of trials was shuffled so
that the relation between neural activity and numerical value was
abolished (Figure S2F); with this shuffled dataset, we calculated
dummy tuning curves (Figure S2G and S2H) and computed the CCs
(termed SPs) between them. This procedure was repeated 1,000 times,
always using a new random subset consisting of eight trials to create
two distributions of CCs and SPs. We quantified the discriminability
between these distributions by ROC analysis. This analysis was
accomplished for each of the sliding windows separately (one
exemplary window is shown by the shaded bars in Figure S2A and
S2B). Each separate analysis step is described in more detail below.

Bootstrapping. Out of the set of all trials (Figure S2A and S2B), we
randomly drew eight trials per numerosity and protocol (i.e., in total
four numerosities 3 two protocols 3 eight trials¼ 64 trials per turn;
Figure S2C). This was done 1,000 times with replacement. We took
care that no trial combination occurred more than once. The CCs
and the SPs were calculated for each turn of the bootstrapping
algorithm. This method filters robust effects across trials and
provides reliable distributions.

Tuning functions. The tuning functions tshape and tdot were
composed of the spike rates of a given neuron obtained in the shape
and dot protocols, respectively. Spike rates were obtained by
averaging across the raw spike trains for 100 ms (see shaded windows
in Figure S2A and S2B). Each tuning function consisted of four spike
rates (corresponding to the neuron’s responses to numerical value n¼
1, 2, 3, and 4 during the identical time window). The spike rates were
combined into one tuning function by sorting them in ascending
numerical order (Figure S2D and S2E).

Cross-correlation coefficients. The CCs provided a measure to
quantify the similarity between tuning to the shape and dot
protocols. The rationale behind this was the following. A neuron
that was ANOVA-selective in both protocols constituted a potential
neuronal association substrate between shapes and numerical values.
In addition to the mere selectivity in the dot and shape protocols,
however, neurons should have similar tuning functions for the (direct
and associated) numerical values in both protocols. Neurons showing
different tunings to the numerical values in the two protocols cannot
be regarded as association neurons and should be excluded. The
normalized cross-correlation is an appropriate method for filtering
for these criteria. The cross-correlation takes a neuron’s entire
tuning functions tshape(n) and tdot(n) for the numerical values n 2 [1, 2,
3, 4] for dot and shape protocols, respectively, into account, rather
than just comparing the preferred numerosities. We calculated the
cross-correlation between these tuning functions for the shape and
dot protocols. It is scale-invariant, since the means t̄shape and t̄dot are
subtracted from each spike rate, and has the advantage of normal-
ization, which allows comparison across all cells. The normalized CC
was calculated as follows:

CC ¼

X4
n¼1
ðtshapeðnÞ � �tshapeÞðtdotðnÞ � �tdotÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

n¼1
ðtshapeðnÞ � �tshapeÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
n¼1
ðtdotðnÞ � �tdotÞ2

s ð1Þ

tshape: tuning function for shape protocol
tdot: tuning function for dot protocol

n 2 f1; 2; 3; 4g: numerical value

�tshape ¼
1
4

X4
n¼1

tshapeðnÞ ð2Þ

�tdot ¼
1
4

X4
n¼1

tdotðnÞ ð3Þ

PLoS Biology | www.plosbiology.org November 2007 | Volume 5 | Issue 11 | e2942692

Linking Signs to Numerical Categories



Shuffle predictor. The SP is supposed to represent the chance
correlation level, irrespective of numerical values. For its calculation
we abolished the relationship between neural activity and numerical
value by randomly assigning each neural response a numerical value
(Figure S2F). Based on the tuning functions of this shuffled dataset
(Figure S2G and S2H), we calculated CCs. We termed the distribution
of these CCs the SP. Since the SP was calculated within the
bootstrapping algorithm (1,000 repetitions), it provides a robust
estimate of non-numerical-related fluctuations. In other words, the
SP takes accidental correlations into account (e.g., those occurring at
phasic ‘‘on’’ responses) and can thus be regarded as baseline
correlation irrespective of influences by the presented numerical
values.

ROC analysis. To determine whether a given cell in a given time
bin responded more similarly to shape and dot stimuli than expected
by chance, we performed a ROC analysis [28] that provided a measure
of how well the distributions of CCs and SPs were separated. The SPs
were taken as the reference distribution. ROC values greater than 0.5
indicated that the CCs of a given cell were higher for the original
dataset, arguing for correlated responses in the two protocols. We
determined a significance threshold based on the ROC values
obtained during the fixation period, during which only random
correlations might occur. A neuron was termed an ‘‘association
neuron’’ if it reached an ROC value after stimulus onset that was
higher than the mean ROC value during the fixation period plus
three standard deviations [49].

It needs to be emphasized that significant correlations are not
caused by similar overall response modulations in the dot and shape
protocols without being related to numerical value. Figure S4A and
S4B shows an example neuron that responded very similarly to both
protocols. Nevertheless, the CCs were close to zero (see red line in
Figure S4C), because this neuron did not show any tuning to
numerical value. The SP was also characterized by values fluctuating
around zero (see blue line in Figure S4C). Consequently, the ROC
analysis did not reveal any significant deviations from chance level
(Figure S4D). In contrast, the neurons in Figure 3 showed strong
modulations of firing rates with numerical value. As a consequence,
the CCs reached high values up to one (see red lines in Figure 3D, 3I,
and 3N). At the same time, however, the SP hovered around zero (see
blue line in Figure 3D, 3I, and 3N). Thus, the ROC analysis correctly
detected the periods of meaningful correlations (see Figure 3E, 3J,
and 3O).

Sliding windows.We calculated the CCs, the SP, and the area under
the ROC curve (AUROC) in sliding windows (100-ms duration, shifted
by 25 ms; see shaded area in Figure S2A and S2B). This procedure
allows a detailed analysis of correlation development over time
(Figure 7A and 7B) and reveals the different temporal correlation
patterns of individual neurons (Figure 4A). We obtained almost
identical proportions of association neurons when the analysis was
based on nonoverlapping windows of 100-ms duration (n ¼ 167;
values exceeding threshold in at least one window to reach
significance).

Error trial analysis. We evaluated the link between neuronal
responses and behavior by analyzing the influence of erroneous
judgments on the neuronal association. To that aim, we calculated
CCs between the neuronal tuning functions based on error trials in
the shape protocol and neuronal tuning functions obtained from
correct trials in the dot protocol. Since the monkeys made very few
errors, we often did not collect error trials for all tested numerical
values. In these cases we restricted the analysis to the numerical
values for which we obtained neuronal data during error trials (at
least two numerical values). We compared these error-related CCs
with CCs based on correct trials (again restricted to the same
numerical values).

Probability calculation. Was the proportion of neurons tuned to
the same numerical value in both the dot and shape protocols higher
than expected by chance? Since some neurons were tuned to
numerosity in the dot protocol while others were encoding numerical
information in the shape protocol, neurons encoding both formats
may simply emerge by chance. We therefore compared the actual
frequency of neurons with identical preferred numerical values in
both protocols to chance occurrence based on probability calcu-
lations. To that aim, we considered the following three events: a cell is
shape-selective, a cell is dot-selective, and a cell is selective for shapes
and dots, formally written as

shape ¼ n cell is significant in shape protocol; n 2 f1; 2; 3; 4g
dot ¼ n cell is significant in shape protocol; n 2 f1; 2; 3; 4g

sig in both cell is significant in shape and dot protocol

Based on our dataset, we calculated the probabilities that a cell
encodes a specific preferred numerical value n in one of the protocols
alone, given that the cell was ANOVA-selective to any numerical
value in both protocols (P(shape ¼ njsig in both) for the shape
protocol and P(dot ¼ njsig in both) for the dot protocol). To obtain
the probability that a cell is encoding the preferred numerical value n
in both protocols, given that the cell is selective to any numerical
value in both protocols (P((shape¼ n ^ dot¼ n)jsig in both)), the two
obtained probabilities were multiplied. This approach was legitimate,
because the two probabilities P(shape ¼ njsig in both) and P(dot ¼
njsig in both) are independent because of the pseudo-randomized
presentation protocol. Thus, we can phrase the probability that a cell
by chance encodes a specific shape and a specific number of dots
simultaneously given that the cell is significant in both formats as

Pn ¼ Pððshape ¼ n \ dot ¼ nÞjsig in bothÞ
¼ Pððshape ¼ njsig in bothÞ � ðdot ¼ njsig in bothÞÞ ð4Þ

In total, the overall probability that a cell encodes one of the n shapes
and the respective associated number of dots by chance, given that
the cell is significant in both protocols, is the sum of the probabilities
for all n:

Ppred ¼
X4
n¼1

Pn ð5Þ

The predicted chance probability Ppred was compared to the observed
probability calculated as the percentage of cells with the same
preferred quantity in both protocols in the pool of cells that were
ANOVA-selective in both the dot and shape protocols. We calculated
binomial tests with Ppred as test proportion. The observed fractions in
the PFC differed significantly from the test proportions during
sample and delay period (p , 0.001, n¼93, Ppred¼0.30, and p , 0.001,
n¼ 139, Ppred¼ 0.31, respectively). The fraction of neurons in the IPS
with the same preferred numerical value in both protocols was very
small but differed significantly from the predicted frequency during
the sample and delay period (p , 0.001, n ¼ 5, Ppred ¼ 0.32, and p ,
0.001, n ¼ 16, Ppred ¼ 0.25, respectively). The results are depicted as
fractions of the entire sample of recorded neurons (both selective
and unselective) in Figure S5E.

This analysis represents a parallel argumentation line to the cross-
correlation analysis. It shows on a stochastic basis that associations of
visual signs and numerical values is not a coincidence.

Supporting Information

Figure S1. Behavioral Performance for Standard and Control Trials

(A–D) Performance of monkey 1 for standard (A) and control (B)
trials in the dot protocol and standard (C) and control (D) trials in the
shape protocol. Same layout as in Figure 2.
(E–H) Performance of monkey 2. Layout as in (A–D).

Found at doi:10.1371/journal.pbio.0050294.sg001 (830 KB TIF).

Figure S2. Application Flow of Correlation Analysis

(A and B) Dot raster histograms showing discharges to all trials of the
dot (A) and shape (B) protocols. The numerical value is color coded.
(C) Subsets of eight randomly drawn trials per numerical value and
protocol (1,000 repetitions with replacement). The numbers corre-
spond to the numerical value shown during the sample period of the
respective trial. From these trials, spike rates were calculated over
100-ms windows (indicated by the shaded time windows in [A] and
[B]).
(D and E) The spike rates were arranged in a numerically ascending
order for the dot (D) and shape (E) protocols, thereby forming tuning
curves. With these resulting tuning curves for the dot and shape
protocols, the CC was calculated.
(F–H) For the SP, we randomly shuffled discharges to the numerical
values (F) and calculated the tuning functions with this shuffled
dataset (G and H). With these resulting dummy tuning curves, the SP
was calculated. The CCs and the SP were compared by ROC analysis.

Found at doi:10.1371/journal.pbio.0050294.sg002 (1.9 MB TIF).

Figure S3. Alternative Shuffling Method

(A–H) Application flow of correlation analysis. Layout as in Figure S2.
For the SP, we randomly shuffled average activity computed for
different numerical values (F) and calculated the tuning functions
with these shuffled datasets (G and H).
(I–K) Comparison of results obtained by the two different shuffling
methods for the three example neurons shown in Figure 3. Upper
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panels show the CCs (red) and the SP (blue); lower panels illustrate
the area under the ROC curve. Panels on the left represent results
from the shuffling method used in this paper; panels on the right
represent results from the alternative shuffling method. There are
only minor differences in the results between the two shuffling
methods.

Found at doi:10.1371/journal.pbio.0050294.sg003 (2.0 MB TIF).

Figure S4. Mere Similarities in Response Modulation Do Not Cause
Significant Correlations

(A and B) Dot raster and spike density histograms (100-ms smoothing
Gaussian kernel) for the dot (A) and shape (B) protocols. Neuron
showing similar response modulations in the dot and shape protocols,
but not as a function of numerical value.
(C) The CC (red line) has values close to zero. The SP (blue line)
resembles the CC.
(D) The area under the curve obtained by the ROC analysis fluctuates
around 0.5. No significant correlation is detected. The black dashed
lines depict the significance criterion (mean 6 three standard
deviations during fixation period); the gray dashed line represents
the chance level.

Found at doi:10.1371/journal.pbio.0050294.sg004 (929 KB TIF).

Figure S5. Preferred Numerical Values of Significantly Tuned PFC
and IPS Neurons

(A and B) Distributions of preferred numerical values one to four in
PFC neurons during sample (A) and delay (B) period. Gray and black
bars correspond to the dot and shape protocols, respectively.
(C and D) Distributions of preferred numerical values in IPS neurons
during sample (C) and delay (D) period.
(E) Frequency of neurons with identical preferred numerical values in

both protocols. The predicted frequencies were compared with the
observed data shown in (A–D) (***, p , 0.001). Percentages refer to
the entire sample of recorded neurons (both selective and unselec-
tive).

Found at doi:10.1371/journal.pbio.0050294.sg005 (638 KB TIF).

Figure S6. Tuning Properties and Absolute Selectivity of PFC
Association Neurons

(A and B) Normalized responses averaged for neurons preferring the
same sample quantity for the dot (A) and shape (B) protocols. Error
bars represent the standard error of the mean.
(C) Distribution of rate differences between preferred and least
preferred numerical value in the dot (gray) and shape (black)
protocols for all associative neurons.
Found at doi:10.1371/journal.pbio.0050294.sg006 (361 KB TIF).
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