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SUMMARY

Prefrontal cortex (PFC) and posterior parietal cortex
are important for maintaining behaviorally relevant
information in working memory. Here, we challenge
the commonly held view that suppression of distrac-
tors by PFC neurons is the main mechanism underly-
ing the filtering of task-irrelevant information. We
recorded single-unit activity from PFC and the
ventral intraparietal area (VIP) of monkeys trained to
resist distracting stimuli in a delayed-match-to-
numerosity task. Surprisingly, PFC neurons prefer-
entially encoded distractors during their presenta-
tion. Shortly after this interference, however, PFC
neurons restored target information, which predicted
correct behavioral decisions. In contrast, most
VIP neurons only encoded target numerosities
throughout the trial. Representation of target infor-
mation in VIP was the earliest and most reliable
neuronal correlate of behavior. Our data suggest
that distracting stimuli can be bypassed by storing
and retrieving target information, emphasizing active
maintenance processes duringworkingmemorywith
complementary functions for frontal and parietal cor-
tex in controlling memory content.

INTRODUCTION

Cognitive control involves the grouping of stimuli into meaningful

categories, online storage in working memory, and selection of

behaviorally relevant over irrelevant information (Baddeley,

2012). Because working memory has a limited capacity, relevant

information needs to be protected against distracting represen-

tations (Luck and Vogel, 1997; Vogel et al., 2005). The prefrontal

cortex (PFC) and posterior parietal cortex (PPC) are thought to

be the major nodes that enable us to selectively attend to target

stimuli while filtering distracting information.

A large body of experimental evidence suggests that PFC and

PPC adopt specialized functions in working memory and selec-

tive attention. PPC neurons represent the most recent stimulus

irrespective of its relevance to the current task (Constantinidis
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and Steinmetz, 1996), and thus fully encode distractors (Bisley

and Goldberg, 2003, 2006; Suzuki and Gottlieb, 2013). In

contrast, PFC has been associated with controlling lower-level

visual areas and gating access to working memory (Anderson

and Green, 2001; Feredoes et al., 2011; McNab and Klingberg,

2008). The ability to resist interfering stimuli is compromised in

monkeys (Malmo, 1942; Suzuki and Gottlieb, 2013) and humans

with lateral PFC lesions (Chao and Knight, 1995, 1998). Re-

sponses of single PFC neurons in the monkey are diminished

for unattended targets (Everling et al., 2002). Compared to

parietal cells, PFC neurons respond little to the presentation of

distractors (di Pellegrino and Wise, 1993; Lennert and Marti-

nez-Trujillo, 2011; Qi et al., 2010; Suzuki and Gottlieb, 2013).

These studies collectively suggest that attentional filtering per-

formance in primates relies on the ability of PFC neurons to sup-

press interfering stimuli.

Our current knowledge of the resistance to memory interfer-

ence stems from experiments that measured neuronal

responses to comparatively simple spatial stimuli placed in the

visual periphery. Thus, there is currently insufficient data to

determine whether prefrontal inhibition of distractors is a general

principle of cognitive functioning or rather restricted to particular

situations. Specifically, it is unknown whether prefrontal sup-

pression of interfering stimuli is found when more complex fea-

tures that typically drive PFC neurons, such as abstract cognitive

categories, have to be filtered. To investigate the neuronal mech-

anisms of maintaining abstract category information in the light

of interference, we trained two rhesus monkeys to memorize

the number of visual items (numerosity) while resisting other dis-

tracting numerosities. We then simultaneously recorded single-

unit activity from the PFC and the ventral intraparietal area

(VIP) of the PPC, two key areas for numerosity processing that

contain high proportions of quantity-selective neurons (Nieder

and Miller, 2004; Nieder et al., 2002, 2006; Viswanathan and

Nieder, 2013).

We considered two hypotheses. Task-irrelevant distractor

numerosities could be processed primarily by parietal neurons,

whereas prefrontal neurons might remain largely unaffected

by interfering information. Alternatively, PFC target repre-

sentations could break down in the face of strong distracting

stimulation, possibly requiring this area to regenerate target

information following the interference to solve the task. We

found evidence for the latter. PFC readily represented the dis-

tractor but subsequently recovered target information, while,
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Figure 1. Task Protocol and Behavioral

Performance

(A) Delayed-match-to-sample task. Monkeys had

to release a bar if the sample and first test display

contained the same number of items (match) and

had to continue holding it if they did not (non-

match). A task-irrelevant, interfering numerosity

presented in the working memory period had to be

resisted.

(B–F) Behavioral performance for monkey R (n = 47

sessions).

(B) Mean performance in trials without (control,

blank) and with interfering stimuli. The dashed line

denotes chance level.

(C) Performance curves for trials without interfering

stimuli (control; dashed line) and for trials where

the interfering numerosity was identical to, i.e.,

repeated the sample (solid line). The monkeys’

performance for all sample test combinations is

plotted against numerical distance between test

and sample numerosity. The peak represents the

percentage of correct match trials, and other data

points mark the percentage of errors in nonmatch

trials.

(D) Performance curves for trials without interfering

stimuli (control; dashed line) and for trials where

the interfering numerosity was not identical to the

sample, i.e., a true distractor (solid line).

(E) Performance curve width was used as a

measure of the precision of sample numerosity

representation. Data are presented as the differ-

ence in width compared to the control condition

for trials where the interfering numerosity repeated

the sample (left bar) and for trials where the inter-

fering numerosity represented a true distractor

(right bar).

(F) Difference in RTs (correct match trials)

compared to the control condition for trials where

the interfering numerosity repeated the sample

(left bar) and for trials with a true distractor

(right bar).

(G–K) Same convention as in (B)–(F) or monkey W

(n = 31 sessions). Error bars, SEM across sessions.

**p < 0.01; ***p < 0.001.

Neuron

Bypassing Distractors in Frontoparietal Cortex
surprisingly, target memories were maintained to a significantly

greater extent in VIP neurons. Our results differ from previous

studies by showing that neuronal suppression of interfering

stimuli in PFC is not necessary to overcome distractors, and

suggest different mechanisms by which the frontoparietal

network controls working memory content to guide goal-

directed behavior.

RESULTS

Behavioral Performance
Twomonkeys performed amodified version of a delayed-match-

to-numerosity task (Nieder et al., 2002) (sample numerosities

1–4), in which a task-irrelevant, interfering numerosity was

embedded in the working memory period (Figure 1A). The 500-

ms-duration interfering stimulus (ranging from 1 to 4 items)

was presented during the memory interval on 80% of the trials

(20% of the trials each with numerosity 1, 2, 3, and 4). In the re-

maining 20% of the trials, a blank gray background circle of
equal duration replaced the interfering numerosity, i.e., no

task-irrelevant stimulus was shown (standard delayed-match-

to-numerosity task). These trials served as control trials. Low-

level visual features were controlled and could not systematically

influence task performance (Nieder et al., 2002).

Both animals had previously received extensive training in

the standard delayed-match-to-numerosity task (Nieder et al.,

2006). Within 3 to 5 months of gradually introducing the inter-

fering numerosity, performance also stabilized in these trials

(see Experimental Procedures). As expected, performance in

trials with interfering stimuli was lower compared to control

trials (monkey R: 71% ± 0.5% versus 79% ± 0.6% [n = 47 ses-

sions], p < 0.001, Wilcoxon signed-rank test, Figure 1B; mon-

key W: 67% ± 0.5% versus 84% ± 0.8% [n = 31 sessions],

p < 0.001, Figure 1G). Importantly, both animals performed

significantly above chance level in trials with interfering stimuli

(p < 0.001, Wilcoxon signed-rank test, for monkey R, Figure 1B,

and monkey W, Figure 1G). Successful filtering of the interfering

stimulus was evident in match trials where the interfering
Neuron 83, 226–237, July 2, 2014 ª2014 Elsevier Inc. 227
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numerosity differed from the sample and test numerosity (Fig-

ure 1A, upper trial branch; monkey R: 71% ± 0.7%, p <

0.001 versus chance level, Wilcoxon signed-rank test; monkey

W: 71% ± 1.0%, p < 0.001). The reduction in performance

induced by the interfering numerosity was most pronounced

in these trials (monkey R: �11%, monkey W: �23% compared

to control match trials). Performance decreased to a smaller

extent in all other trial types (e.g., in nonmatch trials where

the interfering numerosity matched the first test stimulus; Fig-

ure 1A, lower trial branch; monkey R: �6%, monkey W:

�13% compared to control nonmatch trials). The reduction in

performance was in the range of and comparable to recent

studies using other interfering stimuli (Lennert and Martinez-

Trujillo, 2011; Suzuki and Gottlieb, 2013). Finally, there were

almost no trials in which the animals mistakenly responded to

the task-irrelevant stimulus instead of to the first test num-

erosity, which was marked by a red ring (monkey R: <

0.01%, monkey W: < 0.2%; Figure 1A). Collectively, these re-

sults showed that both animals had learned to respond to the

sample numerosity despite memory interference by the task-

irrelevant stimulus.

To quantify the precision of sample representation in working

memory, we plotted the extent to which animals judged the test

as equal in number to the sample as a function of the numerical

distance between test and sample numerosity. Peaked curves

were obtained in trials with interfering stimuli, as in control trials,

which confirmed that both animals continued to correctly

compare the test to the sample despite the presence of the inter-

fering numerosity (Figures 1C, 1D, 1H, and 1I). The impact of the

interfering stimulus on performance depended on its numerosity.

A small increase in performance was observed when the inter-

fering stimulus was equal in number to, i.e., repeated, the sample

numerosity (‘‘repeat-sample trials’’) (Figures 1C and 1H).

Compared to control trials, performance curves were slightly

sharper in repeat-sample trials (monkey R: 6 sigma [difference

of performance curve widths] �0.03 ± 0.01, p < 0.01, Wilcoxon

signed-rank test, Figure 1E; monkey W: 6 sigma �0.06 ±

0.02, p < 0.001, Figure 1J). In contrast, the monkeys made

more errors when the interfering numerosity was unrelated to

the sample, i.e., a true distractor (Figures 1D and 1I). Compared

to control trials, behavioral performance curves were wider in

distractor trials (monkey R:6 sigma 0.18 ± 0.01, p < 0.001, Fig-

ure 1E; monkey W: 6 sigma 0.39 ± 0.02, p < 0.001, Figure 1J),

indicating more errors on trials in which sample and interfering

numerosity differed. As a second behavioral parameter, we

analyzed reaction times (RTs), which were shorter in repeat-

sample trials compared to control trials (monkey R: 6 RT

�37 ± 4 ms, p < 0.001, Wilcoxon signed-rank test, Figure 1F;

monkey W: 6 RT �43 ± 5 ms, p < 0.001, Figure 1K) and

increased in true distractor trials (monkey R: 6 RT 30 ± 3 ms,

p < 0.001, Figure 1F; monkey W: 6 RT 122 ± 5 ms, p < 0.001,

Figure 1K). Thus, the monkeys’ errors were not the result of a

general lack of understanding of the task but instead reflected

the power of an interfering numerosity to specifically compete

with the sample for representation in working memory. For

simplicity, the interfering stimulus (comprising both repetitions

of the sample and true distractors) will from now on be referred

to as the distractor.
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Distractor Numerosities Are Fully Represented in PFC
We simultaneously recorded single-unit activity from lateral PFC

(n = 473; 319 from monkey R, 154 from monkey W) and parietal

VIP (n = 386; 278 from monkey R, 108 from monkey W) while the

monkeys performed the task (Figures 2A–2E). Almost all neurons

in both areas significantly modulated their firing rate during the

course of the trial (task-related neurons; one-way ANOVA across

trial epochs, evaluated at p < 0.05; PFC: n = 448 [95%]; VIP: n =

361 [94%]); Figures 2F and 2G, left). Of these task-related

neurons, a large proportion encoded the sample and/or distrac-

tor numerosity in at least one trial epoch (two-way ANOVA with

factors sample [1–4] and distractor numerosity [1–4], evaluated

at p < 0.01; PFC: total n = 234 [52%]; VIP: total n = 130 [36%]);

Figures 2F and 2G, right; see Table S1 for details). The proportion

of number-selective neurons in PFC and VIP observed here was

comparable to and even exceeded results from previous studies

(Nieder et al., 2002; Nieder and Miller, 2004; Tudusciuc and

Nieder, 2007).

We quantified how much information about the sample and

distractor numerosity was carried by the discharge rates of the

entire population of task-related PFC and VIP neurons (u2 ex-

plained variance) (Buschman et al., 2011; Siegel et al., 2009)

(one-way ANOVA for sample and distractor numerosity [Siegel

et al., 2009; Warden and Miller, 2007]), Figures 2H and 2I; iden-

tical results that also included the interaction termwere obtained

using a two-way ANOVA with factors sample and distractor

numerosity, Figure S1). In PFC, sample information increased

sharply after sample presentation and reached a second peak

immediately prior to distractor presentation (Figure 2H). Surpris-

ingly, sample information then strongly decreased (sample

percent explained variance [u2 PEV] in 100 ms windows after

distractor onset and offset: 2.1 ± 0.2 versus 0.8 ± 0.1, respec-

tively, p < 0.001, Wilcoxon signed-rank test) and was largely

replaced during the distractor period by information about the

distractor stimulus (bin-wise Wilcoxon signed-rank test; Fig-

ure 2H). Distractor information reached peak levels comparable

to previousmaximal values for sample information. In the second

memory period, i.e., after distractor offset, sample information

recovered but was paralleled by increasing distractor informa-

tion, i.e., sample and distractor numerosity were represented

to the same extent (Figure 2H).

A different picture emerged for VIP, where information about

the sample numerosity was maintained throughout the trial

(sample u2 PEV in 100 ms windows after distractor onset and

offset: 1.0 ± 0.1 versus 1.0 ± 0.1, respectively, p = 0.93,Wilcoxon

signed-rank test; Figure 2I). Sample information in VIP was

always larger than for the distractor, even during distractor pre-

sentation (bin-wise Wilcoxon signed-rank test; Figure 2I). More-

over, VIP activity clearly favored the sample over the distractor

numerosity during the second memory period prior to presenta-

tion of the test stimulus. Collectively, these results demonstrate

that the distractor numerosity had a more disturbing effect on

maintenance of sample information in prefrontal cortex, not pos-

terior parietal cortex.

Because the distractor numerosity systematically influenced

the animals’ behavior (Figure 1), we performed the analysis of

sample information separately for repeat-sample, control

(blank), and true distractor trials (Figures 2J and 2K). In both
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Figure 2. Electrophysiological Recordings and Neuronal Selectivity

for Sample and Distractor Numerosities

(A) Schematics of a rhesus monkey brain depicting the location of simulta-

neous single-unit recordings in the prefrontal and parietal (area VIP) cortices.

(B and C) Anatomical surface reconstruction of the recording penetrations in

parietal cortex (fundus of the intraparietal sulcus, VIP; B) and lateral PFC (C) of

monkey R.

(D and E) Same convention as in (B) and (C) for monkey W.

(F and G) Percentage of recorded neurons that were task related (left) and

selective for the sample or distractor numerosity (right) in PFC (F) and VIP (G).

(H and I) Sliding-window u2 PEV quantifying the information about the sample

and distractor numerosity present across task-related neurons recorded in

prefrontal (H) and parietal cortex (I). Bars above the curves denote the time

bins where sample information was larger than distractor information (blue;

thick: p < 0.01; thin: p < 0.05) or smaller (red).

(J and K) Sliding-windowu2 PEV quantifying the information about the sample

numerosity across task-related neurons recorded in prefrontal (J) and parietal

cortex (K) for repeat-sample, control, and true distractor trials. Inset: mean u2
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areas, sample information in the second memory period was

greatest for repeat-sample trials (facilitation), while true distrac-

tors reduced sample information below the level of control trials

(Wilcoxon signed-rank tests; inset in Figures 2J and 2K).

Neuronal Population Dynamics in State Space
To gain further insight into the temporal dynamics of the re-

corded neuronal populations, we asked how individual numeros-

ities were represented across time. We therefore decomposed

ensemble activity in PFC and VIP using multidimensional state-

space analysis (neuronal circuit trajectories) (Harvey et al.,

2012; Stokes et al., 2013) (Figures 3A and 3B). At each point in

time, the activity of n recorded neurons can be defined by a point

in n-dimensional space, with each dimension representing the

activity of a single neuron. Different trajectories are traversed

for different neuronal states, i.e., they represent the encoding

of different stimuli in working memory. Dimensionality is effec-

tively reduced using factor analysis. We first sorted trials by

sample numerosity. Prefrontal trajectories separated after pre-

sentation of the sample and parametrically spanned state space

as a function of sample numerosity (Figure 3A); adjacent numer-

osities were represented by adjacent trajectories, forming an

ordered layout of neuronal states. Thus, similar target numeros-

ities were laid down in similar patterns of neuronal ensemble

activity. Trajectories in PFC were maximally separated after the

first memory delay, but collapsed almost completely when the

distractor was presented (compare time points four and five).

Separation partially returned in the second memory delay. Pop-

ulation activity in VIP initially followed a similar time course

(Figure 3B). Notably, however, the distance between sample tra-

jectories was reduced to a lesser extent in the distractor period

(compare time points four and five).

The layout of sample trajectories in state space reflected two

characteristics of the analog representation of quantities: the

distance between two trajectories scaled with the numerical

distance between their corresponding numerosities (distance

effect); at equal numerical distances, two trajectories were

closer as the magnitudes of their corresponding numerosities

increased (magnitude effect) (Nieder, 2013) (Figures 3C and

3D). We used the mean intertrajectory distance (6d) as a proxy

for the strength of neuronal selectivity for a stimulus (Figures 3E

and 3F). Trajectories were calculated using trials sorted either by

sample or by distractor numerosity (Figures S2A and S2B). PFC

ensemble activity strongly encoded the sample numerosity until

the distractor period, when the distractor started to override the

sample numerosity (at distractor peak bin: sample 6d 0.25 ±

0.08, distractor 6d 0.71 ± 0.23, p < 0.05, Wilcoxon signed-

rank test; Figure 3E). This prominent reversal was not observed

in VIP (at distractor peak bin: sample 6d 0.33 ± 0.12, distractor

6d 0.33 ± 0.14, p = 1.0, Wilcoxon signed-rank test). Unlike in

PFC, VIP sample trajectories diverged significantly more than

distractor trajectories in the second memory period (mean

across time bins: PFC, sample 6d 0.24 ± 0.08, distractor 6d
PEV across the second memory period for each trial type. Error bars and

bands, SEM across neurons; ips, intraparietal sulcus; cs, central sulcus; ls,

lateral sulcus; ps, principal sulcus; sar, superior arcuate sulcus; iar, inferior

arcuate sulcus; ***p < 0.001; **p < 0.01; *p < 0.05. See also Figure S1.
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Figure 3. Neuronal Population Trajectories for Sample and Distrac-

tor Numerosities

(A) Factor analysis describing the state space of neuronal population activity in

PFC (n = 309) for each sample across time, plotted for the first three common

factors. Time points mark the onset of the (1) fixation (presample), (2) sample,

(3) first memory, (4) distractor, and (5) second memory period. Trajectories

represent the mean across single trials.

(B) Same analysis for the population of VIP neurons (n = 354).

(C) Intertrajectory Euclidean distance across time as a measure of neuronal

stimulus selectivity for all sample-sample combinations in PFC.

(D) Same layout as in (C) for VIP.

(E) Mean intertrajectory distance across time for the PFC population. Blue and

red curves represent the distance averaged across all sample-sample and

distractor-distractor trajectory combinations, respectively.

(F) Same layout as in (E) for VIP. Error bands, SEM across trajectories. See also

Figures S2 and S3.
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0.24 ± 0.07, p = 1.0, Wilcoxon signed-rank test; VIP, sample6d

0.37 ± 0.13, distractor 6d 0.06 ± 0.09, p < 0.05; Figures 3E

and 3F).

Distractor trajectories were equally well described in state

space defined by sample or distractor numerosities (Figures

S2C and S2D). To further quantify the trajectory divergence,

we used a classifier based on the distance from an individual trial

trajectory to the mean sample and distractor trajectories at indi-

vidual time points (Figures S3Aa and S3B). It was possible to

decode from PFC population activity in single correct trials the

numerosity currently held in memory at better than chance levels
230 Neuron 83, 226–237, July 2, 2014 ª2014 Elsevier Inc.
in all trial periods (Figure S3A). Following distractor presentation,

it was more likely to correctly decode the distractor than the

sample numerosity in PFC. Single-trial classification accuracy

was lower in VIP but, importantly, higher for the sample

compared to the distractor throughout the trial (Figure S3B).

These results show that ensemble activity in PFC and VIP can

be described using divergent, numerosity-specific trajectories

through state space and provide support for the explained vari-

ance data (Figures 2H and 2I) using a conceptually distinct

analysis.

Single VIP Neurons Encode Sample Information, Not
Distractor Information
We next determined whether the observed population re-

sponses were obtained by averaging over heterogeneous

groups of neurons or whether they reflected the activity of typical

single units (Figure S4). A representative prefrontal neuron

increased its firing rate when either the sample or distractor

numerosity was presented (Figure 4A). When trials were sorted

by sample, firing rates in this cell diverged during the sample

period, but not during the distractor period (Figure 4A, top panel).

Conversely, activity levels discriminated distractor, but not

sample, numerosities when trials were sorted by distractor (Fig-

ure 4A, bottom panel). Thus, this neuron encoded the most

recently presented stimulus, irrespective of its relevance for

solving the task (Figure 4B). Another example PFC neuron

increased its firing rate primarily during the memory periods

(Figures 4C and 4D). In this neuron, distractor information

temporarily replaced the memory of the sample numerosity.

VIP neurons that encoded the distractor were rare (see Figures

S5A and S5B for an example). Typical single neurons in this

area encoded the sample numerosity at various stages of the

trial, including during the presentation of the distractor, but never

represented the distracting stimulus (Figures 4E–4H).

We explored the time course of sample or distractor selectivity

for all task-related single neurons in both areas (sliding-window

analysis of explained variance; Figure 5). Similar to previous

studies (Nieder and Miller, 2004; Viswanathan and Nieder,

2013), VIP neurons represented sample numerosities on average

earlier than PFC neurons (VIP: 158 ± 4 ms, PFC: 171 ± 1 ms; Fig-

ure S6), although this result did not reach statistical significance

in the present data set (p = 0.47, Wilcoxon rank sum test). A total

of 209 individual PFC neurons reached the criteria for sample

selectivity at some point during the trial (see Experimental Proce-

dures). A total of 110 PFC neurons represented the distractor

(inset, Figure 5A). Note that the number of time bins during which

a neuron might become selective for the sample was twice that

for the distractor. In VIP, 144 neurons represented the sample,

and only 23 neurons represented the distractor (inset, Figure 5B).

Significantly more neurons encoded both the sample and the

distractor in PFC compared to VIP (n = 80/209 versus n = 15/

144, p < 0.001, Fisher’s exact test).

To integrate sample and distractor preference into a single

measure, we calculated a time-resolved stimulus selectivity

index (SSI) for all sample-selective neurons: positive values indi-

cate that the neuron’s firing-rate variance is better explained by

differences in the sample numerosity, and negative values indi-

cate that the neuron’s activity correlates better with the
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Figure 4. Example PFC and VIP Single Neurons
(A) Raster plots and spike-density histograms for an example PFC neuron. Trials are sorted by sample (top panel) or distractor numerosity (bottom panel).

(B) Sliding-window u2 PEV quantifying the information about the sample and distractor numerosity for the neuron in (A). Dashed lines mark the significance

threshold (p = 0.01).

(C) Raster plots and spike-density histograms for a different example PFC neuron.

(D) Sliding-window PEV for the neuron in (C).

(E and F) Same layout as in (A) and (B) for an example VIP neuron. Note the difference in y axis scaling in (F) compared to (B) or (D).

(G and H) Same layout as in (E) and (F) for a different example VIP neuron. See also Figures S4 and S5.
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distractor (SSI values were normalized to the maximum for illus-

tration purposes) (Figures 5C and 5D). In PFC, the distractor was

encoded by neurons that became sample selective at various

different time points during the trial (Figure 5C). The distractor

was particularly well represented in neurons with short sample

latencies that started to encode the sample shortly after it was

presented (example neuron in Figures 4A and 4B). These neu-

rons’ SSI time courses following sample and distractor onset

were mirror images of each other, i.e., these cells did not distin-

guish at all between task-relevant and irrelevant stimuli. In VIP,

few of these neurons were found (example neuron in Figures

S5A and S5B). The vast majority of cells did not represent the

distractor at any time point. Instead, sample-selective neurons

were found in all trial periods, including during distractor presen-

tation (Figure 5D).

To determine the extent to which single neurons changed their

coding preference from the sample to the distractor, we calcu-

lated cross-correlations between sample and distractor numer-
osity tuning curves (Diester and Nieder, 2007). For all neurons

that started to encode the sample in either the sample or first

memory period (one-way ANOVA, evaluated at p < 0.01; PFC:

n = 177, VIP: n = 68), trials were sorted by sample numerosity

in the sample and first memory period and by distractor in the

distractor and second memory period (Figure 6A). Numerosity

tuning curves were derived from time windows at equivalent

positions in the first (sample-sorted) and second (distractor-

sorted) halves of the trial and cross-correlated. The higher the

cross-correlation coefficient (CC), the more a neuron switched

from encoding the sample numerosity to representing the dis-

tractor. CC values were particularly high in PFC neurons that en-

coded the sample early on (Figures S7A andS7B). To account for

potential differences in response latency between PFC and VIP

neurons, we compared CC values at peak. Mean peak CCs

were significantly higher in PFC compared to VIP neurons

(PFC: 0.53 ± 0.01, VIP: 0.43 ± 0.02, p < 0.001, Wilcoxon rank

sum test, Figure 6B). As a control for differences in cell counts
Neuron 83, 226–237, July 2, 2014 ª2014 Elsevier Inc. 231
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Figure 5. Representation of Sample and Distractor Numerosities in

PFC and VIP Neurons

(A) Cumulative number of PFC neurons reaching the significance threshold for

sample or distractor selectivity as determined by a sliding-window analysis of

PEV (Figure 4). Inset: Venn diagram of total sample- and distractor-selective

neurons (n = 209 and n = 110, respectively; overlap: n = 80).

(B) Same layout as in (A) for VIP neurons (sample: n = 144, distractor: n = 23;

overlap: n = 15).

(C) SSI for all sample-selective PFC neurons across time. Values of 1 (blue)

indicate a neuron encodes only the sample, values of�1 (red) signal complete

representation of the distractor. Neurons are sorted according to the latency of

sample encoding. White dashed lines mark the sample and distractor trial

periods.

(D) Same layout as in (C) for VIP neurons. See also Figure S6.
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Figure 6. Tuning Curve Cross-Correlations

(A) Analysis schematic. Trials were sorted by sample in the sample and first

memory period (colored lines) and by distractor in the distractor and second

memory period (colored dots). In a sliding-window analysis, numerosity tuning

curves were derived from time windows at equivalent positions in the first

(sample sorted) and second half (distractor sorted) of the trial and cross-

correlated. Low values indicate that selectivity differs for sample and dis-

tractor; high values signal that sample and distractor are represented similarly,

i.e., neurons switched from coding the sample to representing the distractor.

(B) Mean peak CCs between sample and distractor tuning curves for PFC and

VIP neurons that were sample selective in the sample and/or first memory

period (n = 177 and n = 68, respectively).

(C) Same layout as in (B) for tuning curves derived for sample numerosities in all

trial epochs. Error bars, SEM across neurons; ***p < 0.001; n.s., not significant.

See also Figure S7.
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or possibly coding strength (tuning curve width), we calculated

CCs between tuning curves derived for the sample numerosity

in all epochs. Importantly, no differences were found between

PFC and VIP neurons (PFC: 0.40 ± 0.01, VIP: 0.42 ± 0.02, p =

0.62, Wilcoxon rank sum test, Figure 6C), excluding the possi-

bility that unequal selectivity had biased our cross-correlation.

Our analyses of single-neuron responses collectively suggest

that sample and distractor representations shared significantly

larger resources in PFC compared to VIP. Irrelevant distractor
232 Neuron 83, 226–237, July 2, 2014 ª2014 Elsevier Inc.
stimuli were readily encoded by single prefrontal neurons,

whereas the distractor did not propagate well in area VIP.

Sample Memory Strength in VIP Predicts Behavior
So far, we reported data from correct trials. To investigate to

what extent the sample and distractor memory traces were

correlated with successful completion of the task, we analyzed

error trials (Figure 7). We first explored whether the strength of

sample numerosity representation in either area predicted

whether the animals would make errors (Figures 7A and 7C).

To ensure a robust analysis, we selected neurons with a suffi-

cient number of error trials from the population of sample- or dis-

tractor-selective cells described in Figures 5A and 5B (PFC: n =

182/239; VIP: n = 114/152; see Experimental Procedures). Infor-

mation about the sample stimulus was quantified using u2

explained variance as in Figures 2H and 2I. We averaged infor-

mation across neurons in individual trial periods and compared

correct with error trials in both areas. In PFC, sample information

was identical in early trial periods and decreased to the same

extent following presentation of the distractor (Figure 7A). The

only difference between correct and error trials—and thus indi-

cator of a behavioral mistake—was observed in the second

memory period after distractor offset, where sample information
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Figure 7. Error Trial Analysis

(A and B) u2 PEV in the sample, first memory, distractor, and second memory

periods for sample-selective PFC neurons that were recorded during at least

four error trials for each sample and each distractor (n = 182). Data are pre-

sented for correct trials (saturated colors, solid outlines) and for error trials

(unsaturated colors, dashed outlines).

(C and D) Same layout as in (A) and (B) for sample-selective VIP neurons (n =

114). Error bars, SEM across neurons; yp < 0.1; **p < 0.01; ***p < 0.001; n.s.,

not significant. See also Figure S8.
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recovered less in error trials (second memory period: u2 1.95 ±

0.2 versus 1.1 ± 0.21 for correct and error trials, respectively,

p < 0.001, Wilcoxon signed-rank test). In contrast, the strength

of sample representation in VIP predicted behavioral success

at a much earlier stage: the animals made errors when sample

information failed to accumulate in the course of the trial, starting

as early as during sample presentation (sample period:u2 1.26 ±

0.23 versus 1.04 ± 0.44, p = 0.09; first memory period: u2 1.5 ±

0.2 versus 0.58 ± 0.28, p < 0.01; distractor period: u2 1.72 ± 0.21

versus 1.02 ± 0.39, p < 0.01; second memory period: u2 3.08 ±

0.33 versus 1.32 ± 0.3, p < 0.001; Figure 7C). Similar results were

obtained in an analysis of firing rates for preferred numerosities

(Figure S8).

Finally, we determined whether the amount of distractor infor-

mation was correlated with the rate of successfully completed

trials (Figures 7B and 7D). Interestingly, the strength of distractor

representation was identical in correct and error trials in both

PFC and VIP. This suggests that the distractor was not sup-

pressed to solve the task. In summary, lack of sample informa-

tion in area VIP was the earliest predictor of forthcoming errors,

but we did not observe a correlation between performance and

filtering of the distractor in either PFC or VIP.

DISCUSSION

We hypothesized that irrelevant distractor numerosities would

be processed primarily by parietal neurons, whereas prefrontal
neurons would largely suppress distractor information to solve

the task. We report two main findings that violated this predic-

tion. First, most PFC neurons did not resist interference, despite

good behavioral filtering performance in both animals. Surpris-

ingly, distractors affected working memory less in VIP. Second,

neuronal representation of sample information, in particular in

VIP, was the best predictor of behavioral outcome. We did not

observe a correlation of distractor information with performance

in either area.

Lack of Prefrontal Distractor Suppression
In PFC, information about the interfering stimulus carried by

neuronal population activity reached peak levels comparable

to the sample memory (Figures 2 and 3). Many single prefrontal

neurons represented both target and distractor memories

(Figures 4A–4D, 5A, 5C, and 6B). Importantly, the strength of

distractor representation in PFC was unrelated to the animals’

performance (Figure 7B). These results differ markedly from

those of recent electrophysiological studies showing that dis-

tractor suppression in PFC is tightly correlated with attentional

filtering performance (Lennert and Martinez-Trujillo, 2011;

Suzuki and Gottlieb, 2013). For example, in an oculomotor

delayed-response task with a similar stimulus sequence as in

the present protocol, saccade targets placed in the receptive

fields of PFC neurons elicited strong responses, while responses

were significantly weaker when distractors were presented at the

same locations (Suzuki and Gottlieb, 2013).

Why was no suppression of the interfering stimulus observed

here? In computational models of persistent working memory

activity, protection from interference is only seen as long as

external stimulation does not overwhelm the network; when

stimulation intensity is too strong, distractors disrupt sample-

related activity, and the network is able to maintain only a mem-

ory of themost recent stimulus (Brunel andWang, 2001). Indeed,

the numerical stimuli in our study represent highly abstract cate-

gories and strongly drive prefrontal neurons (Nieder et al., 2002;

Nieder and Miller, 2004). In contrast, most previous experiments

probed neuronal activity in the domain of spatial locations (Kat-

suki and Constantinidis, 2012; Lennert and Martinez-Trujillo,

2011; Qi et al., 2010; Suzuki and Gottlieb, 2013). The representa-

tion of locations in space is a typical feature of parietal cortex

neurons (Chafee and Goldman-Rakic, 1998; Bisley and Gold-

berg, 2003, 2006). The use of spatial targets and distractors

could have freed up resources in PFC, enabling this area to

assume cognitive control functions such as suppression of inter-

fering stimuli. Thus, filtering of complex features might require

distinct processing in prefrontal and parietal cortex compared

to the previously studied spatial filtering. It is also possible that

the total number of stimuli presented to the monkeys (one

sample and one distractor) was below the visual working mem-

ory capacity in PFC, but not VIP (Buschman et al., 2011), which

could have reduced the need for prefrontal neurons to filter out

distracting information.

Another common feature of previous studies was that animals

maintained central fixation but covertly attended to and moni-

tored the periphery for visual changes, e.g., the presentation of

target or distractor stimuli (Rainer et al., 1998; Everling et al.,

2002; Lennert and Martinez-Trujillo, 2011; Stokes et al., 2013;
Neuron 83, 226–237, July 2, 2014 ª2014 Elsevier Inc. 233
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Suzuki and Gottlieb, 2013). The degree of target/nontarget

discrimination was therefore dependent on the locus of attention

and the result of attentional filtering (Rainer et al., 1998; Everling

et al., 2002). In contrast, we presented numerosities at the center

of gaze, possibly putting more pressure on the animals to

process the presented stimuli. This task design is shared by a

previous report showing that prefrontal selectivity for sample

images decreased markedly during presentation of task-irrele-

vant stimuli and was not superior to selectivity in inferior tempo-

ral cortex (ITC) (Miller et al., 1996). Contrary to ITC, however,

target-selective activity in PFC returned after distractor offset,

an observation we also made (Miller et al., 1996) (Figures 2, 3,

4C and 4D). Together, our results suggest that, beyond distrac-

tor suppression, the ability to regenerate target information

following a strong interference is an equally important property

of PFC that allows this area to guide behavior. This notion is in

line with the concept of PFC as a flexible neuronal network for

providing relevant information on demand (and not necessarily

throughout the entire trial) (Stokes et al., 2013). Indeed, we found

that target memory strength in the second memory period pre-

ceding the test stimulus was predictive of a successful trial (Fig-

ure 7A), indicating that sample information in PFC, delivered at

the crucial moment, is required to solve the task. The source of

this recovery is currently unclear. It could arise from residual

sample information in PFC itself, which was reduced, but not

lost completely (Figures 2H and 2J). Alternatively, relocation of

memories could also occur from protected storage in VIP (see

discussion below). Finally, even in correct trials, prefrontal target

information did not exceed the strength of distractor representa-

tions prior to the test period (Figures 2 and 3). Thus, a crucial ex-

ecutive control operation performed by the PFC in this task

period was likely stimulus selection (rather than suppression)

for the upcoming response. Recent experiments have shown

that oscillatory activity across neuronal populations could pro-

vide a means for disambiguating information about multiple

items in working memory (Siegel et al., 2009; Dipoppa and Gut-

kin, 2013). Our results are therefore in good agreement with

emerging evidence that mixed rather than pure selectivity for

sensory information in prefrontal neurons is one of the funda-

mental principles of PFC organization (Rigotti et al., 2013).

Working Memory for Sample Information in VIP
Compared to PFC, distractors had less impact on VIP process-

ing. Information about the sample stimulus contained in VIP

population activity was larger than for the distractor at all times

(Figures 2 and 3). Very few single neurons encoded both the

sample and the distractor, and distractor information did not

propagate well in VIP neurons (Figures 4, 5, and 6). It is crucial

to note that the measures investigating the impact of distractors

on sample information are relative by necessity, i.e., determined

within areas. Differences in the number of selective neurons or

their selectivity (see next paragraph) preclude direct interarea

comparisons and would otherwise bias the results.

Area VIP is an extensively connected multimodal association

area in the parietal (dorsal) stream—medial to area LIP in the

fundus of the intraparietal sulcus (IPS)—that responds to visual,

somatosensory, vestibular, and auditory stimulation (Bremmer

et al., 2002; Colby et al., 1993; Duhamel et al., 1998; Schlack
234 Neuron 83, 226–237, July 2, 2014 ª2014 Elsevier Inc.
et al., 2005). Several studies have shown that PPC is involved

in representing visual working memory and complex abstract

visual categories that emerge independently of feedback from

PFC (Swaminathan and Freedman, 2012). VIP in particular is

considered a major hub of numerical information processing in

the primate brain, surpassed only by PFC regarding the number

of selective neurons (Nieder and Miller, 2004; Nieder et al., 2006;

Nieder, 2012; Viswanathan and Nieder, 2013). The proportion of

numerosity-encoding neurons in VIP found here even exceeds

previous reports. The importance of parietal target memory

strength for solving the present task is clearly demonstrated by

the fact that the amount of VIP—not PFC—sample information

was the earliest reliable indicator of a successful trial and

predicted the monkeys’ choice even before the distractor was

presented (Figure 7C).

The finding that distractors affected VIP to a lesser extent than

PFC was unexpected. Parietal cortex (LIP) readily responds to

attention-capturing distractor stimuli and is thought to function

as a saliency map and novelty detector (Bisley and Goldberg,

2003, 2006; Suzuki and Gottlieb, 2013). However, the present

results now suggest that in situations where PFC does not main-

tain target information throughout the trial, parietal cortex (VIP)

might serve as a protected storage area instead. An interesting

question for future exploration is whether PFC might be

providing a gating signal to lower-level parietal areas to control

access to working memory (Feredoes et al., 2011; McNab and

Klingberg, 2008).

Distinct Roles for Frontoparietal Cortex in Distractor
Resistance
We can exclude that the animals failed to give preference to the

sample over the distractor as an explanation for the present

results, because, first, performance was above chance level in

trials with interfering numerosities (Figure 1); second, sample

(not distractor) information was predictive of behavior (Figure 7);

and third, our findings are in accord with a previous report on

prefrontal susceptibility to distractors (Miller et al., 1996). We

can also exclude trial timing as a major factor (our task did not

require sustained attention, since stimulus timing was not jittered

and therefore known to the animals), because tasks using fixed

timing have also produced distractor suppression in PFC (Ever-

ling et al., 2002).

Instead, we endorse the view that several mechanisms may

be conceived of to explain how the brain identifies important tar-

gets in the face of distracting stimuli. Our data suggest that there

is no universally optimal approach, but that the frontoparietal

network adapts to current task demands and shuttles flexibly be-

tween strategies. While some distractors might be eliminated by

suppression and attentional filtering (di Pellegrino and Wise,

1993; Lennert and Martinez-Trujillo, 2011; Qi et al., 2010; Suzuki

and Gottlieb, 2013), we show here that they can also be

efficiently bypassed by maintaining and recovering target infor-

mation. Prefrontal and parietal cortex assumed distinct and

specialized functions to accomplish these tasks. Our data sup-

port current models of working memory that emphasize active

maintenance of stimuli in memory by activating their stored rep-

resentations (in contrast to passively retained sensory traces)

(Baddeley, 2012; Scott et al., 2012). Future studies should
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therefore address the question of how PFC and PPC interact to

create the observed selectivity patterns. Our experiments pro-

vide testable hypotheses regarding the degree and direction of

functional coupling within the frontoparietal circuit that enables

the primate brain to store, protect, and select behaviorally rele-

vant information (Crowe et al., 2013).

EXPERIMENTAL PROCEDURES

Surgical Procedures

Two adult male rhesus monkeys (Macaca mulatta; monkey R and monkey W)

were implanted with two right-hemispheric recording chambers centered over

the principal sulcus of the lateral PFC and the VIP in the fundus of the IPS. All

experimental procedures were in accordance with the guidelines for animal

experimentation approved by the local authority: the Regierungspräsidium

Tübingen.

Task and Stimuli

The animals grabbed a bar to initiate a trial andmaintained eye fixation (ISCAN,

Woburn, MA) within 1.75� of visual angle of a central white dot. Stimuli were

presented on a centrally placed gray circular background subtending 5.4� of

visual angle. Following a 500 ms presample (pure fixation) period, a 500 ms

sample stimulus containing one to four dots was shown. The monkeys had

tomemorize the sample numerosity for 2,500ms and compare it to the number

of dots (one to four) presented in a 1,000 ms test stimulus. Test stimuli were

marked by a red ring surrounding the background circle. If the numerosities

matched (50% of trials), the animals released the bar (correct match trial). If

the numerosities were different (50% of trials), the animals continued to hold

the bar until the matching number was presented in the subsequent image

(correct nonmatch trial). Match and nonmatch trials were pseudorandomly in-

termixed. Correct trials were rewarded with a drop of water. In 80% of trials, a

500 ms interfering numerosity of equal numerical range was presented be-

tween the sample and test stimulus. The interfering numerosity was not sys-

tematically related to either the sample or test numerosity and therefore was

not required to solve the task. In 20%of trials, a 500ms gray background circle

without dots was presented instead of an interfering stimulus, i.e., trial length

remained constant (control condition, blank). Trials with and without interfering

numerosities were pseudorandomly intermixed. Stimulus presentation was

balanced; a given sample was followed by all interfering numerosities with

equal frequency, and vice versa.

Low-level, nonnumerical visual features could not systematically influence

task performance (Nieder et al., 2002): in half of the trials, dot diameters

were selected at random. In the other half, dot density and total occupied

area were equated across stimuli. CORTEX software (NIMH, Bethesda, MD)

was used for experimental control and behavioral data acquisition. New stimuli

were generated before each recording session to ensure that the animals did

not memorize stimulus sequences.

Electrophysiology

Up to eight 1 MU glass-isolated tungsten electrodes (Alpha Omega, Israel) per

chamber and session were acutely inserted through an intact dura with 1 mm

spacing. Stable and well-isolated neurons were recorded at random

(Figure S4). To access VIP, electrodes were passed along the course of the

IPS to a depth of 9–13 mm below the cortical surface (Nieder and Miller,

2004; Nieder et al., 2006; Vallentin et al., 2012). Prior to recording neuronal

activity in VIP, correct positioning of the electrodes was ensured by physiolog-

ical criteria (response to moving visual stimuli and tactile stimulation). Signal

acquisition, amplification, filtering, and digitalization were accomplished with

the MAP system (Plexon, Dallas, TX). Waveform separation was performed

offline (Plexon).

Data Analysis

Analysis was performed with MATLAB (Mathworks, Natick, MA). Unless spec-

ified otherwise, neurons were included in the analysis if the following criteria

weremet: first, their average firing rate across trials was at least 1 spike/s; sec-

ond, they were recorded for at least 1 correct trial in all 20 conditions (4 sample
numerosities 3 5 interfering numerosities including the control [0] condition);

and third, they modulated their firing rate in the course of the trial (task-related

neurons, one-way ANOVA with average firing rates in the presample [fixation],

sample, first memory, interfering stimulus, and second memory periods; eval-

uated at p < 0.05).

Behavioral Data

Behavioral tuning functions were used to describe the percentage of trials

(y axis) for which a test stimulus (x axis, units of numerical distance to sample

numerosity) was judged as being equal in number to the sample. For each con-

dition and session, Gaussian curves were fitted to the tuning functions. The

location of the mean (0) and the amplitude (percent correct trials) were fixed,

and the Gaussian’s width (sigma) was free. Differences in width to the control

condition were averaged across sessions and tested for significance against

zero median using Wilcoxon signed-rank tests.

For each condition and session, RTs were determined for match trials only

(in nonmatch trials, the second test image following the nonmatch was always

a match and therefore predictable). RT differences to the control condition

were averaged across sessions and tested for significance against zero

median using Wilcoxon signed-rank tests.

Neuronal Information

To quantify the information about the sample or interfering numerosity that was

carried by a neuron’s firing rate, we used the u2 PEV measure (Buschman

et al., 2011; Hentschke and Stüttgen, 2011; Puig and Miller, 2012). u2 was

derived from a categorical ANOVA and reflects how much of the variance in

a neuron’s firing rate can be explained by the numerosity of a particular stim-

ulus (see Supplemental Experimental Procedures). Neurons were separately

tested for sample and interfering numerosity PEV. Bin-wise Wilcoxon paired

signed-rank tests (evaluated at p < 0.05 and p < 0.01) were used to compare

sample and interfering numerosity PEV within the population of PFC and VIP

neurons.

To determine at which point in the trial a neuron carried significant informa-

tion about either the sample or interfering stimulus (Figure 5), we used a

permutation test in a sliding-window analysis. For every analysis window

(200 ms duration, 20 ms step), we created a null distribution of PEV values

by randomly shuffling the association between firing rates and numerosities

and calculating u2 (repeated 1,000 times). The significance threshold was

set to p < 0.01 (one-sided), i.e., the actual PEV value was required to be larger

than 99% of values in the null distribution. To control for multiple comparisons,

a neuron was said to significantly encode the sample and/or interfering stim-

ulus if it crossed the respective thresholds for five consecutive windows.

The onset of the first of these windows was taken to be the neuron’s response

latency. For the high-resolution comparison of sample selectivity latency in

PFC and VIP (Figure S6), we restricted the analysis to the sample phase

(50 ms window, 1 ms step, 25 consecutive windows).

For the analysis of u2 PEV in error trials, we included neurons that were

recorded during at least four error trials across each sample and interfering

numerosity. For every neuron included, correct and error trial u2 PEV values

were averaged for the sample, first memory, interfering stimulus, and second

memory periods and compared using a Wilcoxon paired signed-rank test.

In the same population of neurons, we performed an error trial analysis with

firing rates to preferred numerosities, defined as the numerosity that elicited

maximal firing in a 500 ms time window aligned to an individual neuron’s

sample selectivity latency. Firing rates in correct and error trials were normal-

ized (maximum and minimum firing rate set to one and zero, respectively),

averaged for the sample, first memory, interfering stimulus, and second

memory periods and compared using Wilcoxon paired signed-rank tests.

The analysis was performed separately in both monkeys.

Stimulus-Selectivity Index

We calculated a time-resolved SSI to determine whether a neuron’s firing

rate carried more information about the sample or interfering numerosity.

The SSI was determined for all bins where a neuron significantly encoded

the sample and/or interfering numerosity. Positive values indicate that the

neuron’s firing rate carries more information about the sample numerosity;

negative values indicate that discharge rates vary more strongly with the inter-

fering numerosity (see Supplemental Experimental Procedures). For illustra-

tion purposes, the SSI was normalized by the maximum of the absolute values

of each neuron.
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Tuning Curve Cross-Correlation

Cross-correlations were calculated for neurons that were selective for the

sample numerosity in the sample and/or first memory period as determined

by a one-way ANOVA (p < 0.01). We sorted trials by sample numerosity in

the sample and first memory period and by interfering numerosity in the

interfering numerosity and second memory period (Figure 6A). Tuning

curves were derived from time windows (200 ms duration, 20 ms step) at

equivalent positions in the sample-sorted and interfering-numerosity-sorted

part of the trial and cross-correlated as described previously (Diester and

Nieder, 2007) (see Supplemental Experimental Procedures). The higher the

CCs, the more a neuron switched from encoding the sample to representing

the interfering numerosity. Shuffle predictors for each region were calcu-

lated by creating a null distribution of CCs by randomly shuffling the asso-

ciation between firing rates and numerosities (1,000 repetitions). Shuffled

values were centered on zero (mean < 10�3). Figures 6B and 6C show

mean values plus three standard deviations (across neurons and time

windows).

Factor Analysis

Factor analysis was performed using MATLAB toolboxes (Yu et al., 2009).

It extracts low-dimensional neuronal trajectories from noisy spiking activity

and represents these in state space, where each data point corresponds

to the instantaneous firing rate of the population of neurons at a given

point in time. Firing rates in correct trials were processed using five latent

dimensions, a bin width of 50 ms, and a Gaussian smoothing kernel of

50 ms. To obtain a comparable number of pseudosimultaneously recorded

PFC and VIP neurons for the analysis of sample (interfering numerosity)

trajectories, we included PFC neurons with at least 33 (24) trials per

numerosity and VIP neurons with at least 19 (15) trials per numerosity.

For each sample and interfering numerosity, we picked the minimum num-

ber of trials shared across neurons from one recording area and calculated

averages across single-trial population trajectories. The Euclidean distance

between two trajectories at corresponding time points was used as a mea-

sure of the difference in the population’s activation state between individual

numerosities. The distance in the presample (fixation) period was used as a

baseline and subtracted from distances calculated at subsequent time

points.

Classification of single trials was performed based on distances to the

individual numerosities’ mean trajectories. For each trial and time point, the

distance between the test and each of the four reference trajectories was

calculated. A trial was classified correctly if the test trajectory’s numerosity

was equal to the numerosity of the closest reference trajectory. Classification

performance is expressed as the mean accuracy across trials (chance level

25%). Classification was performed using leave-one-out cross-validation,

i.e., mean reference trajectories were calculated excluding the test trajectory

(Harvey et al., 2012).
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Figure S1 Explained variance analysis using two-way ANOVA. (A, B) Sliding window percent 
explained variance (ω2 PEV) quantifying the information about the sample and distractor 
numerosity as well as the interaction term across task-related neurons recorded in prefrontal (A) 
and parietal cortex (B). Error bands, s.e.m. across neurons.
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Figure S2 Neuronal population trajectories for distractor numerosities. (A) Factor analysis 
describing the state space of neuronal population activity in PFC (n = 316) for each distractor across 
time, plotted for the first three common factors. Time points mark the onset of the (1) fixation 
(pre-sample), (2) sample, (3) first memory, (4) distractor and (5) second memory period. Trajectories 
represent the mean across single trials. (B) Same analysis for the population of VIP neurons (n = 
346). (C) Mean inter-trajectory Euclidean distance across all distractor-distractor combinations in 
PFC as a measure of neuronal stimulus selectivity (same population as in Fig. 3A). Blue and red 
curves represent the distance calculated using the state space defined by sample and distractor 
numerosities, respectively. (D) Same layout as in (C) for VIP (same population as in Fig. 3A).



0 1000 2000 3000
Time (ms)

C
la

ss
ifi

er
 a

cc
ur

ac
y 

(%
)

50

25

75

C
la

ss
ifi

er
 a

cc
ur

ac
y 

(%
)

50

25

75

0 1000 2000 3000
Time (ms)

A B
Sample Distractor Sample Distractor

Figure S3, related to Figure 3

Sample accuracy
Distractor accuracy
Chance level

PFC VIP

Figure S3 Single-trial decoding of sample and distractor numerosities. (A) Time-resolved 
single-trial decoding of sample and distractor numerosities from PFC population activity 
(n = 309 neurons). Trials were sorted according to sample or distractor numerosity and subjected 
to factor analysis (Fig. 3). For each single trial trajectory and time bin, the distance to the 4 mean 
trajectories was calculated. Classification accuracy reflects the percentage of trials that were 
correctly classified as being closest to the actual sample or distractor trajectory (chance level P = 
0.25). (B) Same layout for the VIP population (n = 354 neurons).
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Figure S4 Extracellular single-unit recordings. (A) Distribution of inter-spike intervals for the 
single neuron in Fig. 4A together with action potential waveforms extracted from a representative 
16 s extracellular voltage trace (inset; noise marked in gray). (B) Same layout for the single 
neuron in Fig. 4C. (C) Same layout for the single neuron in Fig. 4E. (D) Same layout for the single 
neuron in Fig. 4G.
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Figure S5 Rare VIP neuron encoding both sample and distractor. (A) Raster plots and spike density 
histograms for a single VIP neuron. Trials are sorted according to sample (top panel) or distractor 
numerosity (bottom panel). (B) Sliding window percent explained variance (ω2 PEV) quantifying the 
information about the sample and distractor numerosity for the neuron in (A). Dashed lines mark the 
significance threshold (P = 0.01).
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Figure S7 Sliding window cross-correlation. (A, B) Cross-correlation coefficients (CC) between sample 
and distractor tuning curves, derived as explained in Fig. 6A, for PFC (A) and VIP (B) neurons that were 
sample selective in the sample and/or first memory period (n = 177 and n = 68, respectively). Neurons 
are sorted by time of maximal correlation. Data are smoothed by a five-point running average 
rectangular filter. The first dashed line represents the offset of the stimulus (sample/distractor) period, 
the second dashed line indicates the offset of the memory (first/second) period.

Figure S6 Time course of frontoparietal numerosity selectivity. Cumulative latency distribution of 
PFC and VIP neurons determined by a sliding window percent explained variance (ω2 PEV) 
analysis quantifying the onset of sample information in the sample period.

Figure S6, related to Figure 5
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Table S1A. Number of task-related neurons showing selectivity in PFC.

Main effect of sample
Main effect of distractor
Interaction s. x d.

Sample     Memory1   Distractor   Memory2

    88              98              43              73
      76              73
      18              26

two-way ANOVA evaluated at P < 0.01

Table S1B. Number of task-related neurons showing selectivity in VIP.

Main effect of sample
Main effect of distractor
Interaction s. x d.

Sample     Memory1   Distractor   Memory2

    27              36              24              64
      24              28
      21              13

two-way ANOVA evaluated at P < 0.01

Table S1, related to Figure 2

Figure S8 Error trial analysis. (A, B) Normalized firing rates for preferred numerosities in the 
sample, first memory, distractor and second memory periods for the same population of 
sample-selective PFC neurons as in Fig. 7A plotted separately for monkey R (A) and monkey W (B). 
Data are presented for correct trials (saturated colors, solid outlines) and for error trials 
(unsaturated colors, dashed outlines). (C, D) Same layout as in (A, B) for the same 
sample-selective VIP neurons as in Fig. 7C. Error bars, s.e.m. across neurons; **, P < 0.01;
***, P < 0.001; n.s., not significant.

Figure S8, related to Figure 7



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Surgical procedures 

Two adult male rhesus monkeys (Macaca mulatta, monkey R and monkey W) were 

implanted with a titanium head post and two right-hemispheric recording chambers 

centered over the principal sulcus of the lateral prefrontal cortex (PFC), anterior to 

the frontal eye fields, and over the ventral intraparietal area (VIP) in the fundus of the 

intraparietal sulcus guided by anatomical MRI and stereotaxic measurements. 

Chambers were angled to be able to penetrate the cortical surface perpendicularly. 

Surgery was conducted using aseptic techniques under general anesthesia. 

Structural magnetic resonance imaging to locate anatomical landmarks was 

performed before implantation. All experimental procedures were in accordance with 

the guidelines for animal experimentation approved by the local authority, the 

Regierungspräsidium Tübingen. 

Task and stimuli 

The monkeys were trained to match visually presented non-symbolic set sizes 

(numerosities) while suppressing a salient task-irrelevant, interfering numerosity 

(Fig. 1A). The animals grabbed a bar to initiate a trial and maintained eye fixation 

within 1.75 ° of visual angle of a central white dot. An infrared-based eye tracking 

system monitored ocular position (ISCAN, Woburn, MA). Trials were immediately 

aborted and excluded from further analysis if the animals broke fixation. Stimuli were 

presented on a centrally placed gray circular background subtending 5.4 ° of visual 

angle. Following a 500 ms pre-sample (pure fixation) period, a 500 ms sample 

stimulus containing 1 to 4 dots was shown. The monkeys had to memorize the 

sample numerosity for 2,500 ms and compare it to the number of dots (1 to 4) 

presented in a 1,000 ms test stimulus. Test stimuli were marked by a red ring 

surrounding the background circle. If the numerosities matched (50 % of trials), the 

animals released the bar (correct Match trial). If the numerosities were different 

(50 % of trials), the animals continued to hold the bar until the matching number was 

presented in the subsequent image (correct Non-match trial). Match and non-match 

trials were pseudo-randomly intermixed. Correct trials were rewarded with a drop of 

water. In 80 % of trials, a 500 ms interfering numerosity of equal numerical range 

was presented between the sample and test stimulus. The interfering numerosity was 

not systematically related to either the sample or test numerosity and therefore not 



required to solve the task. In 20 % of trials, a 500 ms gray background circle without 

dots was presented instead of an interfering stimulus, i.e. trial length remained 

constant (control condition, blank). Trials with and without interfering numerosities 

were pseudo-randomly intermixed. Stimulus presentation was balanced. That is, 

across a set of trials in which a given numerosity was used as the sample, it was 

followed by all interfering numerosities with equal frequency. Similarly, a given 

interfering numerosity was preceded by all sample numerosities with equal 

probability. Thus, when trials are sorted by sample (or interfering numerosity), any 

measure of neuronal activity is directly attributable to that stimulus, because the 

influence of the interfering numerosity (or sample) is factored out across trials. 

Both animals had previously been trained to full proficiency in the standard delayed-

match-to-numerosity task without task-irrelevant numerosities. Over the course of 3 

to 5 months, the interfering numerosity was slowly introduced while carefully 

monitoring behavioral performance. The red ring surrounding the test stimuli ensured 

that the animals did not confuse individual stimuli and almost never responded prior 

to presentation of the test numerosities. During training, there were no abrupt 

changes in performance to suggest that the animals had switched response 

strategies. Neuronal recordings commenced when performance in both animals was 

stable over several weeks. 

Low-level, non-numerical visual features could not systematically influence task 

performance (Nieder et al., 2002): in half of the trials, dot diameters were selected at 

random. In the other half, dot density and total occupied area were equated across 

stimuli. CORTEX software (NIMH, Bethesda, MD) was used for experimental control 

and behavioral data acquisition. All stimuli were produced using MATLAB (The 

Mathworks, Natick, MA) and generated anew before every recording session to 

ensure that the animals could not solve the task by memorizing stimulus sequences. 

Electrophysiology 

In each recording session, eight 1 MΩ glass-isolated tungsten electrodes (Alpha 

Omega, Israel) per chamber were acutely inserted through an intact dura with 1 mm 

spacing using custom-made screw microdrives. Brain tissue was allowed to settle for 

at least 30 minutes before recording. Stable and well-isolated neurons were recorded 

at random (Fig. S4); no attempt was made to preselect neurons according to 

particular response properties. To access area VIP at the fundus of the intraparietal 

sulcus (IPS), electrodes were passed along the course of the IPS to a depth of 9 to 



13 mm below the cortical surface (Nieder and Miller, 2004; Nieder et al., 2006; 

Vallentin et al., 2012). Prior to recording neuronal activity in VIP, correct positioning 

of the electrodes was ensured by physiological criteria (response to moving visual 

stimuli and tactile stimulation). Signal acquisition, amplification, filtering and 

digitalization were accomplished with the MAP system (Plexon, Dallas, TX). 

Timestamps of trial events and action potentials were extracted for analysis. 

Waveform separation was performed offline using a combination of principal 

component analysis of waveform traces and other properties of the recorded 

waveforms (amplitude, peak/trough; Offline Sorter, Plexon). 

Data analysis 

Data analysis was performed with MATLAB. None of the reported analyses 

depended on the exact choice of trials to include or time windows to analyze. 

Repeating analyses with a different set of parameters yielded comparable results. 

Unless specified otherwise, neurons were included in the analysis if the following 

criteria were met: first, their average firing rate across trials was at least 1 spike/s; 

second, they were recorded for at least 1 correct trial in all 20 conditions (4 sample 

numerosities x 5 interfering numerosities including the control [0] condition); and 

third, they modulated their firing rate in the course of the trial (task-related neurons, 

one-way analysis of variance (ANOVA) with average firing rates in the pre-sample 

(fixation), sample, first memory, interfering stimulus, second memory periods; 

evaluated at P < 0.05). A total of 448 neurons in PFC and 361 neurons in VIP fulfilled 

these criteria. 

Behavioral data 

Behavioral tuning functions were used to describe the percentage of trials (y axis) for 

which a test stimulus (x axis, units of numerical distance to sample numerosity) was 

judged as being equal in number to the sample. A numerical distance of 0 denotes 

match trials; the data point represents the percentage of correct trials. As the 

numerical distance increases, there is less confusion of the test with the sample 

numerosity; the data points represent the percentage of error trials. Tuning curves 

were calculated separately for trials without interfering numerosities (control (blank); 

Fig. 1C, D, H, I), for trials in which the sample and interfering numerosity were equal 

(‘repeat sample’ condition, Fig. 1C, H) and for trials in which the sample and 

interfering numerosity were different (‘distractor’ condition, Fig. 1D, I). For each 

condition and session, Gaussian curves were fitted to the tuning functions. The 



location of the mean (0) and the amplitude (percent correct trials) were fixed, the 

Gaussian’s width (sigma) was free. Differences in width to the control condition were 

averaged across sessions and tested for significance against zero median using 

Wilcoxon signed rank tests. 

For each condition and session, reaction times (RT) were determined for match trials 

only (in non-match trials, the second test image following the non-match was always 

a match and therefore predictable). RT differences to the control condition were 

averaged across sessions and tested for significance against zero median using 

Wilcoxon signed rank tests. 

Neuronal information 

To quantify the information about the sample or interfering numerosity that was 

carried by a neuron’s firing rate, we used the percent explained variance (ω2 PEV) 

measure (Buschman et al., 2011; Hentschke and Stüttgen, 2011; Puig and Miller, 

2012). ω2 reflects how much of the variance in a neuron’s firing rate can be explained 

by the numerosity of a particular stimulus. It was calculated using 

, 

where the individual terms are derived from a one-way categorical ANOVA 

(Buschman et al., 2011; Siegel et al., 2009): SSGroups denotes the sum-of-squares 

between groups (numerosities), SSTotal the total sum-of-squares, df the degrees of 

freedom, and MSE the mean squared error. The number of trials in each group was 

balanced. Balancing was accomplished by stratifying the number of trials in each 

group to a common value: A random subset of trials was drawn (equal to the 

minimum trial number across groups) and the statistic was calculated. This process 

was repeated 25 times, and the overall statistic was taken to be the mean of the 

stratified values. ω2 is an unbiased, zero-mean statistic when there is no information: 

when we recomputed the analysis after subtracting the shuffled PEV (Siegel et al., 

2009; Puig and Miller, 2012), we obtained identical results (not shown). For every 

neuron and analysis window (200 ms duration, 20 ms step), ω2 shuffle was 

calculated after randomly shuffling the association between firing rate and 

numerosity. This process was repeated 1,000 times, and the shuffled PEV was taken 

to be the mean of the individual values. Neurons were separately tested for sample 

and interfering numerosity PEV. Bin-wise Wilcoxon paired signed rank tests 



(evaluated at P < 0.05 and P < 0.01) were used to compare sample and interfering 

numerosity PEV within the population of PFC and VIP neurons. Repeating the 

analysis using a two-way categorical ANOVA with factors sample and interfering 

numerosity yielded identical results (Fig. S1). 

To determine at which point in the trial a neuron carried significant information about 

either the sample or interfering stimulus (Fig. 5), we used a permutation test in a 

sliding window analysis. For every analysis window (200 ms duration, 20 ms step), 

we created a null distribution of PEV values by randomly shuffling the association 

between firing rates and numerosities and calculating ω2. This process was repeated 

1,000 times. The significance threshold for the amount of information in any given 

window was set to P < 0.01 (one-sided), i.e. the actual PEV value was required to be 

larger than 99 % of values in the null distribution. To control for multiple comparisons, 

a neuron was said to significantly encode the sample and/or interfering stimulus if it 

crossed the respective thresholds for 5 consecutive windows. The onset of the first of 

these windows was taken to be the neuron’s response latency. For the high-

resolution comparison of sample selectivity latency in PFC and VIP (Fig. S6), we 

restricted the analysis to the sample phase (50 ms window, 1 ms step, 

25 consecutive windows). 

Because the animals performed significantly above chance level, we obtained 

considerably less error trials than correct trials. Therefore, we could not record any 

neurons that were present for at least 1 error trial in all possible trial conditions. For 

the analysis of ω2 PEV in error trials, we therefore relaxed the selection criteria and 

included neurons that were recorded during at least 4 error trials across each sample 

and interfering numerosity. 76 % (n = 182/239) of sample- or distractor-selective 

neurons in PFC and 75 % (n = 114/152) of sample- or distractor-selective neurons in 

VIP fulfilled these criteria. For every neuron included, correct and error trial ω2 PEV 

values were averaged for the sample, first memory, interfering stimulus and second 

memory periods and compared using a Wilcoxon paired signed rank test. 

In the same population of neurons, we performed an error trial analysis with firing 

rates to preferred numerosities, defined as the numerosity that elicited maximal firing 

in a 500 ms time window aligned to an individual neuron’s sample selectivity latency. 

Firing rates in correct and error trials were normalized (maximum and minimum firing 

rate set to 1 and 0, respectively), averaged for the sample, first memory, interfering 



stimulus and second memory periods and compared using Wilcoxon paired signed 

rank tests. The analysis was performed separately in both monkeys. 

Stimulus-selectivity index 

We calculated a time-resolved stimulus-selectivity index (SSI) to determine whether a 

neuron’s firing rate carried more information about the sample or interfering 

numerosity. The SSI was determined for all bins where a neuron significantly 

encoded the sample and/or interfering numerosity (see Neuronal Information). It was 

calculated by 

, 

where the terms are derived from one-way ANOVAs: SSGroups, Sample and 

SSGroups, Distractor denote the sum-of-squares between groups (numerosities) when 

trials are sorted by sample or interfering numerosity, respectively, and SSTotal is the 

total sum-of-squares of either ANOVA (identical values for sorting by sample or 

interfering stimulus). Positive values indicate that the neuron’s firing rate carries more 

information about the sample numerosity; negative values indicate that discharge 

rates vary more strongly with the interfering numerosity. For illustration purposes, the 

SSI was normalized by the maximum of the absolute values of each neuron. 

Tuning curve cross-correlation 

Cross-correlation of neuronal tuning curves (Diester and Nieder, 2007) provided a 

measure to quantify the extent to which single neurons switched from encoding the  

sample to representing interfering numerosities. We sorted trials by sample 

numerosity in the sample and first memory period and by interfering numerosity in 

the interfering numerosity and second memory period (Fig. 6A). Tuning curves were 

derived from time windows (200 ms duration, 20 ms step) at equivalent positions in 

the sample-sorted and interfering-numerosity-sorted part of the trial and cross-

correlated by calculating 

, 

where FRSample (n) is the average firing rate for numerosity n ∈ {1,2,3,4} when trials 

were sorted by sample, FRSample  the average firing rate across all numerosities when 



trials were sorted by sample, FRDistractor (n) the average firing rate for numerosity 

n ∈ {1,2,3,4} when trials were sorted by interfering numerosity, and FRDistractor  the 

average firing rate across all numerosities when trials were sorted by interfering 

numerosity. Thus, the higher the cross-correlation coefficients (CCs), the more a 

neuron switched from encoding the sample to representing the interfering 

numerosity. 

CCs were calculated for neurons that were selective for the sample numerosity in the 

sample and/or first memory period as determined by a one-way ANOVA (P < 0.01; 

n = 177 in PFC, n = 68 in VIP). A random subset of trials (equal to the minimum trial 

number across numerosities, 8 trials at most) was drawn for each numerical value 

and time window (sorted as described above). Thus, trial numbers were equated for 

all neurons, both regions, and sample and interfering numerosities. Tuning functions 

were built with the averaged firing rates of these trials, and the CC was calculated. 

This process was repeated 25 times, and the overall statistic was taken to be the 

mean of the stratified values. CCs for PFC and VIP neurons were compared using 

Wilcoxon rank sum tests. To control for differences in cell counts or coding strength, 

we calculated CCs between tuning curves derived for the sample numerosity in all 

epochs using the same time windows as for the sample/interfering-numerosity CCs. 

Shuffle predictors for each region were calculated by creating a null distribution of 

CCs by randomly shuffling the association between firing rates and numerosities 

(1,000 repetitions). Shuffled values were centered on zero (mean < 10-3). Fig. 6B, C 

shows mean values plus 3 standard deviations (across neurons and time windows). 

Factor analysis 

Factor analysis was used to describe the temporal evolution of activity in a large 

ensemble of recorded neurons, i.e. the population dynamics. Factor analysis extracts 

low-dimensional neuronal trajectories from noisy spiking activity and represents 

these in state space, where each data point corresponds to the instantaneous firing 

rate of the population of neurons at a given point in time. The trajectory is the path 

that links the sequence of activation states at each time point (Stokes et al., 2013). 

Compared to PCA, factor analysis better captures shared fluctuations in activity 

across the population and more effectively discards independent variability specific to 

individual neurons (Harvey et al., 2012). Analysis was performed using MATLAB 

toolboxes (Yu et al., 2009). Firing rates in correct trials were processed using 5 latent 

dimensions, a bin width of 50 ms and a Gaussian smoothing kernel of 50 ms. 



Optimal parameters were determined using cross-validation routines from the toolbox 

(Yu et al., 2009). To obtain a comparable number of PFC and VIP neurons for the 

analysis of sample trajectories, we included PFC neurons with at least 33 trials per 

sample numerosity (n = 309) and VIP neurons with at least 19 trials per sample 

(n = 354). For the analysis of interfering numerosity trajectories, we included PFC 

neurons with at least 24 trials per interfering numerosity (n = 316) and VIP neurons 

with at least 15 trials per interfering numerosity (n = 346). These neurons formed 

populations of pseudo-simultaneously recorded neurons. For each numerosity, we 

picked the minimum number of trials shared across neurons from one recording area 

and calculated single-trial population trajectories. Trajectories were then averaged 

across trials to represent a mean population response for the given numerosity. The 

analysis was performed separately for trials sorted by sample and by interfering 

numerosity. To determine how well the state space defined by sample numerosities 

captured variability in the neuronal responses to interfering numerosities, we 

repeated the analysis using the population of neurons used in the sample trajectory 

analysis (PFC: n = 309; VIP: n = 354) and calculated interfering numerosity 

trajectories in sample space. 

The Euclidean distance between two trajectories at corresponding time points was 

used as a measure of the difference in the population’s activation state between 

individual numerosities. For each pair, the distance in the pre-sample (fixation) period 

was used as a baseline and subtracted from distances calculated at subsequent time 

points. 

Classification of single trials was performed based on distances to the individual 

numerosities’ mean trajectories. Trials were sorted either according to sample or to 

interfering numerosity. For each trial and time point, the distance between the test 

and each of the 4 reference trajectories was calculated. A trial was classified 

correctly if the test trajectory’s numerosity was equal to the numerosity of the closest 

reference trajectory. Classification performance is expressed as the mean accuracy 

across trials (chance level 25 %). Classification was performed using leave-one-out 

cross validation, i.e. mean reference trajectories were calculated excluding the test 

trajectory (Harvey et al., 2012). 
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