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Significance

The association between 
numbers and signs constitutes a 
presymbolic semantic mapping 
process. We explored the 
neurobiological underpinnings of 
semantic number associations in 
a bird species that lacks the 
mammalian-specific cerebral 
cortex. We recorded single 
neurons in a telencephalic 
associative brain region of crows 
trained to associate the 
numerical values of dot displays 
with visual signs to solve a 
number task. The responses of 
neurons reflected the numerical 
values associated with visual 
signs in a behaviorally relevant 
way. Consistent with the crows’ 
better behavioral performance 
with signs, neuronal 
representations of numerical 
values extracted from signs were 
more selective compared to 
those from dot arrays. Number 
association neurons in crows 
point to a phylogenetic 
preadaptation for presymbolic 
semantic mapping.

Author affiliations: aAnimal Physiology Unit, Institute of 
Neurobiology, University of Tübingen, Tübingen 72076, 
Germany

Author contributions: M.E.K. and A.N. designed research; 
performed research; analyzed data; and wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS. 
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email: 
andreas.nieder@uni-tuebingen.de.

Published October 30, 2023.

NEUROSCIENCE

Association neurons in the crow telencephalon link visual 
signs to numerical values
Maximilian E. Kirschhocka  and Andreas Niedera,1

Edited by Ranulfo Romo, El Colegio Nacional, Mexico City, Mexico; received August 12, 2023; accepted September 20, 2023

Many animals can associate signs with numerical values and use these signs in a 
goal-directed way during task performance. However, the neuronal basis of this semantic 
association has only rarely been investigated, and so far only in primates. How mech-
anisms of number associations are implemented in the distinctly evolved brains of 
other animal taxa such as birds is currently unknown. Here, we explored this semantic 
number-sign mapping by recording single-neuron activity in the crows’ nidopallium 
caudolaterale (NCL), a brain structure critically involved in avian numerical cognition. 
Crows were trained to associate visual shapes with varying numbers of items in a number 
production task. The responses of many NCL neurons during stimulus presentation 
reflected the numerical values associated with visual shapes in a behaviorally relevant 
way. Consistent with the crow’s better behavioral performance with signs, neuronal 
representations of numerical values extracted from shapes were more selective compared 
to those from dot arrays. The existence of number association neurons in crows points 
to a phylogenetic preadaptation of the brains of cognitively advanced vertebrates to link 
visual shapes with numerical meaning.

numbers | corvid songbird | associations | Corvus | semiotics

Different animal species across the animal kingdom assess numerical quantity and use this 
information to their survival advantage (1). The capacity for numerical competence is 
shared with humans through a nonsymbolic, evolutionarily primordial system (2), the 
approximate number system (ANS), which is thought to form a basis for human-specific 
symbolic number representations (3, 4). This system enables perceptual-like and approx-
imate estimation of numerical quantity. As key characteristics, the ANS gives rise to 
numerical distance effects (numerical distant quantities are more easily discriminated) 
and numerical size effects (at a given numerical distance, smaller quantities are more easily 
discriminated) (1).

Building on the faculty for symbolic understanding, humans learn to deal with number 
symbols from an early age, ultimately allowing them to precisely determine cardinality 
and perform complex arithmetic (5–7). Before signs, such as the Arabic numerals, become 
symbolic representations of numerical quantity, an association between the numerical 
value and an arbitrary sign must be formed in long-term memory to give rise to indexical 
number representations (5, 8). Indexical number-sign associations can also be grasped by 
animals from various taxa, such as nonhuman primates (9–17), a parrot and pigeons 
(18–21), and bees (22). As indications of the semantic mapping, the characteristics of 
approximate number representations become imprinted onto visual signs. This leads to 
ANS-typical numerical distance and size effects with these signs (12), as well as Stroop-like 
effects in trials in which set size and number signs provide contradictory magnitude 
information (23). Such semantic associations between numerical values and arbitrary signs 
provide behavioral advantages as they improve deliberate decision-making in animals  
(24, 25) and three-year-old children (26).

The neuronal basis of semantic associations has only been investigated in the brains of 
primates so far. The prefrontal cortex (PFC) possesses a large proportion of association 
neurons that link numerical values to visual shapes in a behaviorally relevant way (27). 
However, the numerical aptitude of vertebrates that do not possess a layered neocortex 
suggests that semantic numerical associations can also be realized by differently evolved 
brain structures. This begs the question of whether similar or different mechanisms of 
number associations are implemented in the brains of different vertebrate taxa. The avian 
telencephalon shows striking anatomical differences compared to mammals that are indic-
ative of an independent trajectory of brain evolution (28–30). Yet, birds such as crows 
show elaborate numerical abilities (31–33). Within the crow pallial telencephalon, the 
nidopallium caudolaterale (NCL) is ideally situated to facilitate semantic associations: 
First, it constitutes the key hub of number processing in the avian brain (32–38). Second, 
it operates at the apex of the telencephalic hierarchy, receives afferent information from D
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all sensory modalities and outputs information to premotor struc-
tures (39, 40). Third, it plays a crucial role in learning and memory 
processes (41–44). Last, it upholds representations of associations 
between pairs of arbitrary stimuli (45–48). We therefore hypoth-
esized that the numerical abilities of crows emerging from the 
pallial endbrain could also give rise to association neurons that 
map numerical meaning onto arbitrary visual shapes. Here, we 
recorded single-neuron activity from the NCL of crows trained 
to associate the numerical values of dot displays with numeral 
signs to solve a number production task.

Results

We trained two carrion crows (Corvus corone) to judge the numer-
ical value of instruction stimuli and to subsequently produce the 
instructed number via pecking responses to a touch-sensitive mon-
itor (49) (Fig. 1A). Stimuli instructing the numbers 1 to 5 were 
presented in two protocols (Fig. 1B), a “dot protocol” and a “sign 
protocol”. During training, the crows had learned that each of the 
Arabic numeral signs was associated with a specific numerical 
value. Both stimulus protocols were shown in two conditions 
(standard and control conditions; Fig. 1B) to prevent crows from 
discriminating covarying non-numerical visual features and to 
promote generalization across sign appearance. The temporal 
arrangement of the motor execution period was controlled in such 
a way that crows could only rely on the absolute number of self-
generated actions and not on alternative timing strategies to solve 
the task. These controls have been described in detail before (33).

Number Production Performance. The crows were highly 
proficient on the task (crow 1: 74.7 ± 5.1%, 71 sessions; crow 
2: 72.1 ± 4.0%, 56 sessions; mean ± SD). Fig. 1 C and D shows 
the average performance of each crow over all recording sessions, 

separately for the dot and the sign protocol. Generally, accuracy 
varied as a function of instructed number, with larger numbers less 
accurately produced. Number 3 as the middle of the tested number 
range is an exemption to this general trend. Further, both crows 
were more accurate on sign trials compared to dot trials of the same 
number. However, performance for all instructed numbers in both 
stimulus protocols were highly above the respective chance level 
(solid black lines in Fig. 1 C and D; instruction number 1: 33.3%; 
2: 25%; 3: 20%; 4: 16.7%; 5: 14.3%; see ref. 33 for details). The 
crows’ number production behavior exhibits numerical distance 
and size effects, indicating that dots and signs were represented 
as numerical quantities (33).

Neuronal Responses in the NCL. We recorded the activity of 339 
single neurons in the telencephalic nidopallium caudolaterale, 
NCL, of both crows while they performed the task. We have 
shown previously that neurons in the NCL translate the instructed 
number into a motor plan for the upcoming number of pecks 
during the motor planning period (33). Here, we focused on the 
sensory stimulus presentation period prior to motor planning 
(Fig. 1A). To identify neurons selective to the numerical values 
of dot arrays and signs, we performed two-factorial sliding-
window ANOVAs with factors “instruction number” (1 to 5) 
and “stimulus protocol” (dots or signs) on the neurons’ firing 
rates (see Methods for detailed description). For further analyses 
on associative neurons, we selected all neurons with a main effect 
for instruction number, including number-selective neurons with 
an additional main effect for stimulus protocol. We found that 
half of all recorded neurons (170/339, 50.2%) had significant 
intervals of selectivity for number during the presentation of the 
instruction stimulus. Number-selective neurons fired maximally to 
one of the presented instruction numbers during their respective 
selective intervals. Fig. 2 shows two exemplary number-selective 
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Fig. 1. Number production task and performance. (A) Number production task. A trial was initiated by the crow positioning its head in front of the touch-
sensitive monitor. An instruction stimulus appeared cueing the crow for 1 to 5 pecking responses (three pecks cued in the example shown), in half of the trials 
either by a random dot display or Arabic numerals, respectively. Following, the crow planned the upcoming number of pecks during a brief motor planning 
period. During the subsequent motor execution period, the crow was prompted to peck the instructed number of times. There were systematically varied 
pauses between pecking actions to prevent the crow from using alternative timing strategies to solve the task (not shown). Finally, the crow indicated reaching 
the target number by pecking at the enter key. (B) Example instruction stimuli. Each instruction number 1 to 5 was indicated by two stimulus protocols, dot 
arrays, and signs (Arabic numerals). Standard and control stimuli controlled for non-numerical factors in the dot numerosities (position, size, density, and total 
dot area), and shape appearance (different font types) of the signs, respectively. (C) Average task performance (% correct) of crow 1 (71 sessions). Performance 
is shown for all instruction numbers, separately for the two stimulus protocols, dots (white bars) and signs (gray signs). Error bars show the SEM over session. 
Black horizontal lines in the graphs denote the chance level for each instruction number. (D) Average task performance of crow 2 (56 sessions). Same as in C.D
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neurons that fire maximally for numerical value 1 (Fig. 2 A–E) or 
5 (Fig. 2 F–J), irrespective of whether dots or signs signaled the 
instructed number. The neuron in Fig. 2A fired the most both 
when one dot was presented and when the Arabic numeral “1” 
was shown (Fig. 2B). This neuron also responded similarly across 
protocols to the presentation of other instruction numbers. This 
became evident in the neuron’s tuning curve (Fig. 2C) calculated 
over its interval of selectivity (gray shaded area in Fig. 2 A and 
B). The tuning curves were largely overlapping for both stimulus 
protocols. Similarly, the second example neuron responded equally 
strong to its preferred instruction number 5 irrespective of the 
stimulus protocol, i.e., five dots (Fig. 2F) or Arabic numeral “5” 
(Fig. 2G). The tuning functions (Fig. 2H) of this neuron were also 
largely superimposed across stimulus protocols.

Neuronal Associations of Signs with Numerical Values. Such 
number-selective neurons in the NCL may constitute a candidate 
substrate for the neuronal association of numerical values between 
numerosity in dot displays and arbitrary visual signs associated 
with numerical values. If so, these neurons are expected to 
exhibit very similar tuning functions to the instructed numbers 

irrespective of the protocol of the instructing stimulus. To test this, 
we performed a time-resolved correlation analysis of individual 
cell’s tuning functions between dot and sign protocols. For all 
170 number-selective neurons, we calculated cross-correlation 
coefficients (CCs) in a sliding-window manner to the real data 
and to shuffled data. A CC of 0 indicates no correlation, whereas a 
CC of 1 signals perfect correlation. To assess the significance of the 
correlation, we derived receiver operating characteristics (ROC) at 
every point in time between real CCs and CCs based on shuffled 
data to control for chance occurrence (shuffled predictors, SPs). 
The area under the ROC (AUROC) value expresses the degree of 
similarity of a neuron’s tuning functions for dot and sign protocols 
(see Methods for details), with a value of 0.5 indicating chance 
similarity and a value of 1 signaling perfect similarity.

Using this approach, we find that the tuning curves of 133 NCL 
neurons (39.2% of the population of 339 cells; 78.2% of 170 
number-selective neurons) were significantly correlated during 
stimulus presentation in the dot and sign protocols; such neurons 
were thus characterized as “number association neurons”. For 
example, the neurons in Fig. 2 constituted such association neu-
rons: Shortly after the onset of the instruction stimulus, the 
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Fig. 2. Exemplary number-selective neurons in the NCL. (A–E) Example neuron preferring instruction number 1. Neuronal activity separately for dot protocol 
(A and F) and sign protocol (B and G) is displayed as dot raster histograms (Top; each dot representing one action potential) and spike-density functions (Bottom; 
smoothed with a 150-ms Gaussian kernel) in the Bottom. Responses to specific instruction numbers are color-coded (legend right of raster plots) and aligned to 
onset of the instruction stimulus (0 ms). (C) Average tuning curves (to the dot and sign protocol) of the neuron during its selective interval (indicated by the shaded 
area in the histograms, determined by sliding window ANOVA, see Methods). (D) Cross-correlation coefficients (CC) and SP values of the respective neurons over 
duration of the trial. Same alignment as for the histograms. (E) AUROC values as a function of trial time for the respective neurons. Same alignment as in the 
histograms. The horizontal black line at 0.5 shows chance level AUROC, the dashed line indicates the significance threshold, and the solid, thick lines indicate 
periods of significant association (see Methods for details). (F–J) Example neuron preferring instruction number 5. (F and G) Detailed neuronal responses of this 
neuron to dots and signs, respectively. Same layout as A and B. (H) Average tuning curves of this neuron. Same layout as in C. (I) Cross-correlation coefficients 
(CC) and SP values of the respective neuron. Same layout as in D. (J) AUROC values for this respective neuron. Same layout as in E.D
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correlation coefficients of both cells increased from 0 during the 
prestimulus period to values of around 0.5 during instruction 
stimulus presentation (Fig. 2 D and I). While the first example 
neuron preferring number 1 showed early and consistently high 
correlation indicating sustained association (Fig. 2D), the second 
example neuron preferring number 5 associated numerical values 
only later in the stimulus presentation period (Fig. 2I). For both 
neurons, significant association activity was captured by the sig-
nificant AUROC values over the course of a trial (Fig. 2 E and J).

We found that the number of significantly associating neurons 
increased with the continued duration of the instruction period 
(Fig. 3A). The black bars in the lower part of Fig. 3A indicate 
time-bins with significant AUROC values for each association 
neuron (same as in Fig. 2 E and J). Since many of these neurons 
associated the numerical value of the dot display and the linked 
sign during more than one time point (individual traces in the 
bottom part of Fig. 3A), the entire instruction period is covered 
by the population of association neurons (bar height in the top 
part of Fig. 3A).

Behavioral Relevance of Neuronal Associations. We tested 
whether the activity of association neurons correlated with the 
behavioral outcome in a trial. We hypothesized that if association 
neurons failed to link dot numerosity with the respective sign, the 
crows would be prone to produce erroneous numbers of actions. To 
test this prediction, we calculated CCs in the instruction stimulus 
period for correctly performed trials and compared them to error 
trials in which the crows were producing an incorrect number of 
pecks. Since both crows made almost no errors for number 1 trials, 
the CCs were calculated only for a subset of instruction numbers, 
e.g., instruction numbers 2 to 5, matched for tuning curves in 
both stimulus protocols. For all 133 association neurons, we 
compared CCs for correct and error dot and sign trials. As visible 

in Fig. 3B, the systematic pattern of CCs apparent for correct 
trial associations (Top), was absent during error trials (Bottom), 
indicating that association neurons failed to associate dots and 
signs in their respective significance interval. As a consequence, the 
average population CCs were significantly reduced in error trials 
compared to correct trials (Fig. 3C; CCs(correct) vs. CC(error) 
during the first half stimulus period, P < 0.05, n = 133 neurons, 
Wilcoxon signed-rank test), especially during the second half of 
the instruction period (P < 0.001). As a control, no difference was 
detected between CCs of correct and error trials during the baseline 
period prior to stimulus presentation (P = 0.7). This suggests that 
the neurons’ failure to properly associate the numerical value from 
dot displays with visual signs contributed to errors. Association 
neurons were thus of significance to the behavioral performance 
of the crows.

Numerical Tuning of Association Neurons. We next investigated 
the numerical tuning properties of association neurons in the 
two stimulus protocols. To this end, we first determined every 
association neuron’s preferred numerosity of dots and Arabic 
numeral during their ANOVA-selective intervals. With a slight 
overrepresentation of number 1, all five instruction numbers were 
represented as preferred numbers by the association neurons in dot 
(Fig. 4A) and sign protocol (Fig. 4B). Population tuning functions 
were constructed from normalized tuning curves of all neurons 
preferring a certain instruction number. In the dot protocol, the 
tuning curves showed a numerical distance effect, i.e., neuronal 
activity gradually decreased for nonpreferred numerosities more 
remote from the preferred numerosity (Fig. 4C). In addition, the 
tuning curves in the dot protocol showed a numerical size effect 
by increasing tuning width as a function of the increasing value of 
the preferred numerosity, rendering larger numbers less precisely 
represented than smaller numbers (Fig.  4C). Neither distance 
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nor size effects were evident for the categorical tuning function 
in the sign protocol in which the preferred numerosity elicited 
the strongest responds, but all nonpreferred numerosities elicited 
similarly low firing rates (Fig. 4D). We quantified this difference 
by plotting the average population tuning curves as a function of 
numerical distance. The numerical distance effect predicts a gradual 
decay of activity for nonpreferred numerosities as a function of 
distance from the preferred numerosity. For the dot protocol, we 
found significantly decreased activity for the second compared to 
the first absolute numerical distance on the tuning function, and 
for the third compared to the second absolute numerical distance 
(Num. dist. 1 vs. 2: P < 0.001; 2 vs. 3: P < 0.01; pair-wise Wilcoxon 
signed-rank tests) (Fig.  4E). In contrast, such differences were 
absent for the sign protocol (Fig. 4F) (1 vs. 2: P = 0.06; 2 vs. 3: 
P = 0.82). Together, this demonstrates a more precise neuronal 
representation of numerical values from Arabic numerals that was 
consistent with better performance of the crows in the sign protocol 
compared to the dot protocol (Fig. 1 C and D).

Time Course of Cross-Protocol Population Decoding. Last, we 
examined the temporal dynamics of the numerical information 
being extracted by the entire sampled NCL population, irrespective 
of number selectivity. For this, we used a time-resolved population 
decoding approach based on support vector machine (SVM) 
classifiers. In brief, within sliding time windows throughout 
the trial, we trained SVM models on instruction numbers and 
respective firing rates of the entire population of neurons with a 
sufficient number of trial repetitions (n = 270 neurons; see Methods 
for details). These firing rates came from trials of either the dot 
or the sign protocol. Within the same time windows, trained 

models were then tested to predict the instruction number of 
previously unseen trials, either from the same stimulus protocol 
as used for training (two within-protocol conditions) or from 
the respective other protocol (two across-protocol transfer). By 
comparing actual instruction numbers with the predicted ones, 
we derived the time-courses of classifier accuracies for each of the 
four specific conditions (Fig. 5A).

All specific conditions were significantly decodable by the pop-
ulation within the period of stimulus presentation. As expected, 
the within-protocol condition (i.e., training on dots and testing 
on dots and training on signs and testing on signs) reached the 
highest accuracy levels of up to 80% and 50% for the sign-to-sign 
and dot-to-dot condition, respectively (Fig. 5A). The onset of 
significant decoding was reached soon after instruction stimulus 
onset (first significant decoding indicated by downward-pointing 
triangles on the x-axis of Fig. 5A) with short latencies (latencydot-dot 
= 100 ms from stimulus onset, latencysign-sign = 40 ms; note, how-
ever, that these latencies are smeared out along the time-axis due 
to the size of the sliding window, see Methods for details).

As anticipated, the accuracy of cross-protocol transfer reached 
considerably smaller values of around 30% accuracy. Still, we 
found that this decoding accuracy was significantly above chance 
for sign-to-dot and dot-to-sign transfers (Fig. 5A). The onset of 
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Fig. 4. Numerical tuning properties of association neurons. (A and B) Relative 
frequency of preferred instruction numbers of all (n = 133) association neurons 
for the dot (A) and the sign protocol (B). (C and D) Average tuning functions of 
all association neurons preferring each instruction number (color-coded) in 
the respective stimulus protocol (C, dots; D, signs). Lines and symbols show 
the mean, error bars the SEM over units. (E and F) Average tuning curve as a 
function of absolute numerical distance (Methods) for dot (E) and sign protocol 
(F). Error bars show the SEM, asterisks depict the significance (*P < 0.05;  
**P < 0.01; ***P < 0.001; n.s.: not significant).
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Fig.  5. Temporal dynamics of NCL population decoding. (A) Accuracy (% 
correct) of linear SVM classifiers trained and tested throughout progression 
of a trial (see Methods for details). Colored lines show mean and shaded error 
bars the SEM over resamples for each of four specific within- and across-
protocol conditions (color-coded). Vertical solid lines indicate task periods, 
the vertical dashed line depicts shuffled label classifier performance (95th 
percentile, mean over four conditions). The colored markers show the time 
of first above-chance classification accuracy for each condition, lines stayed 
above chance level after these time points. (B) The accuracy (% correct) of 
linear SVM classifiers was trained on the activity of correct trials pooled over 
stimulus protocol and tested on either new correct trials (red line) or error 
trials (blue line). Layout of graph as in A.D
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significant decoding appeared also later after stimulus onset 
(latencydot-sign = 180 ms, latencysign-dot = 280 ms).

We further utilized this decoding approach to examine whether 
the neuronal population irrespective of number selectivity carried 
behaviorally relevant information. Analogous to the above, we 
trained an SVM classifier on correct trials pooled over all stimulus 
protocols in a time-resolved manner (n = 164 neurons; see Methods 
for further details). We then tested the trained model on activity 
from both new correct trials and from error trials. Classification 
accuracy for correct trials rose sharply after instruction stimulus 
onset and remained well above chance throughout stimulus and 
planning periods (Fig. 5B). For error trials, however, classification 
accuracy was worse compared to correct trials throughout the trial 
phases and temporarily dropped below chance. Particularly during 
instruction stimulus presentation, the accuracy of error trial pre-
diction remained close to chance, indicating that already during 
the presentation of the instructing stimulus, the population of 
neurons erroneously encoded the instructed number and failed to 
associate signs with dot numerosities (Fig. 5B).

These analyses with all recorded neurons irrespective of number 
selectivity confirmed previous findings from the subpopulation 
of association neurons. First, as soon as the instructing stimulus 
is presented, the NCL extracted numerical values. Second, after 
a brief delay relative to stimulus onset, the NCL significantly 
associated numerical values across protocols. Third, instruction 
number representation within the NCL was more precise for the 
sign protocol. And last, NCL represented this information in a 
behaviorally relevant manner.

Discussion

We instructed crows to produce a specific number of self-generated 
pecks. As instruction stimuli, we not only used dot displays that 
allowed a direct judgment of the number of dots but also Arabic 
numeral signs that the crows had learned to associate with specific 
numerical values 1 to 5. Single-neuron recordings in NCL showed 
that half of the neurons were selectively encoding the numerical 
value of the instruction stimuli during their presentation. This is 
a higher proportion of number-selective neurons compared to 
previous publications (34–36) which may be due to slight differ-
ences in selection criteria to detect those neurons. Most of these 
neurons were tuned to the same preferred number in dot and sign 
protocols, i.e., these number association neurons linked the 
numerical values presented in dot displays to signs and in a behav-
iorally relevant manner. These association neurons, as well as the 
entire population of NCL neurons, encoded numerical values 
associated with signs with higher precision.

Associations in the NCL. Few studies so far have investigated 
the neuronal underpinnings of stimulus associations in the avian 
brain. In these studies, the NCL was demonstrated to contain 
neurons that selectively represent learned association between 
pairs of arbitrary, meaningless stimuli. When crows were trained 
to associate visual stimuli with visual stimuli, and auditory 
stimuli with visual stimuli, half of the recorded NCL neurons 
signal within and cross-modal association (45). Another set of 
studies demonstrated that such association neurons are gradually 
established while the crows learn to associate new pictures (47), 
but only a subset of dedicated NCL neurons seem to be enabled 
to form such associations (48).

The current study similarly required crows to form long-term 
associations through training. A special feature of our study is that 
not arbitrary pictures and shapes without inherent meaning, but 
an abstract numerical meaning, namely cardinal values that are 

rank-ordered among themselves, were associated with signs. Such 
semantic associations require not only memory function but also 
information about numerical quantity. The NCL shows these 
requirements as it is not only engaged in memory functions (50–
52) but also constitutes a key area for numerical processing in the 
avian endbrain (32–38).

The described number association neurons form an ideal neu-
ronal substrate for such semantic stimulus associations. Neuronal 
association signals emerged quickly after instruction stimulus 
presentation. This constitutes an efficient neuronal solution to 
map number information from different presentation formats 
onto the same numerical space. The neurons’ failure to form such 
semantic associations resulted in a higher probability of the crow 
to make errors. This indicates that associative signals early during 
the stimulus presentation phase are necessary for the crows to 
decipher the correct instruction number from different stimulus 
formats. Of course, this neuronal representation can only explain 
a fraction of errors as the instruction stimulus provides only a first 
potential source of error, and other potential error sources accu-
mulate during the trial progression. This associative neuronal 
signal during instruction stimulus presentation can later in the 
trial ease sensorimotor number transformation to give rise to num-
ber selective sensorimotor neurons in the crow telencephalon that 
signal the impending number of self-generated actions (33, 53).

Semantic Associations in the Avian NCL in Comparison to the 
Primate PFC. Comparable semantic number association neurons 
described here for the NCL of crows have only been reported in 
the PFC of the macaque monkey. Neurons in the primate PFC 
are known to readily associate arbitrary stimuli (54, 55). Diester 
and Nieder (27) trained monkeys in a delayed-match-to-sample 
task to discriminate the numerosity in dot displays and to match 
the numerical values associated with Arabic numeral shapes to 
numerosities 1 to 4. Single-neuron recordings showed 23% of 
association neurons in the monkey PFC (in contrast, only 2% 
in the intraparietal sulcus, which was concluded to play no role 
in this type of numerical association). Besides a similar fraction 
of association neurons in PFC and NCL, also the time course 
of association activity early in the stimulus period is comparable 
between PFC and NCL. Last, association neurons in the PFC 
tended to show more precise number representations for signs, 
just as we showed for the crow NCL. The close correspondence 
of the mechanisms of how the primate PFC and the corvid NCL 
establish semantic number association underlines the NCL’s 
importance as the avian equivalent of the primate PFC both in 
the number domain (56) and for cognition control in general (57).

In the human brain, PFC neurons have not been probed for 
numerical associations. However, neuronal responses to numer-
osity in dot displays and to numerical values in Arabic numerals 
have recently been recorded in the medial temporal lobe (MTL) 
regions of human epilepsy patients performing calculation tasks 
(58). Instead of association neurons responding equally well to 
nonsymbolic number in dot displays and symbolic number in 
numerals, two separate populations of neurons were reported that 
either encoded nonsymbolic or symbolic numbers, but not both. 
Similar to our findings in the crow NCL, however, numerical 
representations encoded by the one population of MTL neurons 
in numerals lacked a numerical distance effect and tuning was 
more precise compared to numerosity representations in dot arras 
encoded by the other population of MTL neurons.

The comparison of crow (and monkey) data with human findings 
is of course not fully appropriate, as only humans are truly 
symbol-competent. However, the number association neurons in 
crows could point to a phylogenetic preadaptation of the brains of D
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cognitively advanced vertebrates being able to link visual shapes 
with numerical meaning. This associative capability might later have 
been exploited when humans evolved symbol understanding (8, 
59). After all, the association of an arbitrary visual shape with a 
numerical value is one of the first steps when children learn to master 
a symbolic number system (5). We speculate that the neuronal cor-
relates of semantic association we reported here in crows form a 
putative prerequisite for symbolic number representations.

Methods

Animals. Two hand-raised male carrion crows (Corvus corone) obtained from 
the institute’s breeding facility were used. They were housed in spacious indoor 
aviaries (L x W x H: 3.6 x 2.4 x 3 m) in social groups of up to four individuals 
with daylight and a natural light-dark cycle under controlled temperature and air 
humidity conditions (for details, see ref. 60). The crows were kept on a controlled 
feeding protocol and earned food as a reward during training and recording 
periods. Additional food was supplemented after the daily sessions if necessary. 
Water was always provided ad libitum. All procedures were conducted accord-
ing to the national guidelines for animal experimentation and approved by the 
national authority, the Regierungspräsidium Tübingen, Germany. Other parts of 
the current dataset were published in a previous publication (33).

Experimental Apparatus. Training and recording occurred in a darkened 
operant conditioning chamber. The crows were loosely strapped to a wooden 
perch using leather jesses and placed in front of a 15” touchscreen monitor (3M 
MicroTouch; 60 Hz refresh rate). A light barrier, consisting of an infrared light 
emitter/detector fixed on the ceiling of the chamber and a reflector foil attached 
to the crow’s head, was used to ensure the crows maintained a central head 
position in front of the monitor (viewing distance: 14 cm). A custom-built auto-
mated feeder for reward delivery was positioned below the monitor. Birdseed 
pellets (Beo Special, Vitakraft) and mealworms (Tenebrio molitor larvae) were 
used as rewards. Loudspeakers (Visaton WB10) for auditory feedback, as well 
as an infrared camera (Genius iSlim 321R) for observational control, were also 
installed in the chamber. Presentation of stimuli and collection of behavioral 
responses was managed by the CORTEX system (National Institute for Mental 
Health, Bethesda, MD). Electrophysiological data were recorded using a PLEXON 
MAP system (Plexon Inc., Dallas, TX).

Behavioral Protocol. The crows were trained on a computerized task to plan and 
produce a visually instructed number of pecking responses. A ready cue (small 
white circle in the center of the touchscreen) indicated to the crow that a trial 
could be initiated. To initiate a trial, the crow had to position its head centrally in 
front of the monitor, thereby closing an infrared light barrier. Moving out of this 
predefined position before the start of the motor execution period terminated the 
ongoing trial. After the initiation of a trial, an empty gray background circle (size: 
26.1° of visual angle) was displayed for the duration of the baseline period (300 
ms). Next, an instruction stimulus (600 ms) cued the number of 1 to 5 pecking 
actions to produce. This impending number of actions had to be maintained in 
working memory throughout the following motor planning period (1,000 ms). 
The appearance of a second, smaller gray circle (confirmation stimulus, or “enter 
key”; size: 11.4° of visual angle) below the empty background circle (now serving 
as enumeration stimulus) marked the end of the motor planning period and 
the beginning of the motor execution period. In this motor execution period, 
the crow had to sequentially produce the cued number of pecks in a predefined 
way: the crow had to produce each unitary response by pecking at the enumer-
ation stimulus within 600 ms of its displaying onset. The enumeration stimulus 
disappeared after each peck, followed by a short and systematically varied inter-
response interval after which the enumeration stimulus would reappear for as 
often as the crow would continue to add more pecks. The temporal arrangements 
of the motor execution period, as well as controls for timing of responses, have 
been described in detail before (33).

The crow signaled it produced the instructed number of responses by pecking 
at the confirmation stimulus (enter key). Both types of pecking responses (to 
the enumeration stimulus and the confirmation stimulus) were accompanied 
by specific sounds (250 ms duration) serving as auditory feedback for registered 
responses. A trial was counted correct if the number of pecks produced by the 

crow prior to the confirmation response matched the instructed number. Correct 
trials triggered dispensary of a food reward accompanied by a reward tone. If the 
crow gave a premature confirmation response (e.g., n–1, with n as the instructed 
number) or exceeded the requested number of enumeration responses by one 
(n+1), an error was detected. If the crow exited the light barrier before the onset 
of the response period, reacted prematurely during the waiting interval, missed 
the pecking time interval, or missed the monitor location of the enumeration or 
confirmation stimuli, the trial was aborted but not counted as error. All errors and 
trial abortions resulted in the withholding of reward accompanied by a specific 
sound, a visual feedback signal, and a brief timeout period, in which initiation 
of the next trial was delayed.

We used two numerical presentation protocols with a standard and control 
condition for each numerical value ranging from 1 to 5, as described below. The 
numerical values, protocols, and conditions were presented in a pseudorand-
omized and balanced order.

Stimuli. Two different numerical presentation protocols with numerical values 1 
to 5 as instruction stimuli were used: The dot protocol showed a numerosity dot 
display with 1 to 5 black dots; the sign protocol consisted of five different visual 
shapes (Arabic numerals) that the crows had learned to associate as signs with 
the instructed number of actions. Both dot and sign displays were shown on a 
gray circular background.

For both protocols we used two stimulus conditions (standard and control), 
thereby controlling for non-numerical factors. For the dot protocol, the different 
stimulus conditions controlled for low-level visual features (total dot area and 
dot density) that covary with numerosity. In the standard condition, dot displays 
consisted of 1 to 5 dots of pseudorandomized size (1.2 to 5.5° of visual angle) 
presented at pseudorandom locations on the gray background circle, with the only 
requirement that dots were not overlapping or touching. In the control condition, 
total dot area and density were kept constant across numerical values.

For the sign protocol, black Arabic numerals 1 to 5 of pseudorandom size (15 
to 26 pts., 2.9 to 4.9° of visual angle) were placed at a pseudorandom location on 
the background. “Arial” was used as the standard font-type, whereas “Times New 
Roman,” “Souvenir,” and “Lithograph Light” were used as control fonts. To prevent 
the animal from memorizing or rote learning individual stimuli, 5 complete sets 
of stimuli for every combination of protocol, condition, and numerosity were 
generated anew before each session using MATLAB (Version R2020b, MathWorks 
Inc., Natick, MA).

Surgery and Recordings. After crows reached the learning criterion (described 
in detail in ref. 33), we implanted custom-made microdrives carrying electrodes 
for electrophysiological recordings. All surgeries were performed while the ani-
mals were under general ketamine/xylazine anesthesia. The head was placed in 
the stereotaxic holder that was customized for crows with the anterior fixation 
point (that is, beak bar) at 45° angle below the horizontal axis of the instrument. 
Using stereotaxic coordinates (center of craniotomy: anterior–posterior +5 mm 
relative to interaural point as zero; medial–lateral 13 mm relative to midline), 
we chronically implanted two microdrives with four electrodes each in the left or 
right hemispheres, a connector for the head stage and a small head post to hold 
the reflector for the light barrier. Glass-coated tungsten microelectrodes with  
2 MΩ impedance (Alpha Omega) were used. The electrodes targeted the corvid 
NCL, which is characterized by dopaminergic cells and was histologically verified 
before (61, 62). Crows received analgesics after surgery (35).

Few days after surgery, when the crows had fully recovered, we recorded 
single-unit activity in the behaving crows. We recorded from both hemispheres 
of both crows (9 sessions from right NCL and 62 sessions from left NCL in crow 
1; 5 sessions from left NCL and 51 sessions from right NCL for crow 2). Every 
session the birds were placed in the recording setup and a head stage containing 
an amplifier was plugged into the connector implanted on the bird’s head and 
connected to a second amplifier/filter and the PLEXON MAP box outside of the 
setup by a cable above and behind the bird’s head (all components by Plexon Inc., 
Dallas, TX). Each recording session started with advancing the electrodes until a 
proper neuronal signal was detected. Neurons were never preselected based on 
task responsiveness. PLEXON’s Offline Sorter was used to manually offline sort 
spikes into single-unit waveforms.

Data Analysis. All data analyses were carried out using MATLAB (Version R2020b, 
MathWorks Inc., Natick, MA). Values reported in the main text refer and figures D
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refer to the mean ± SEM unless stated otherwise. SEM was calculated as the SD 
divided by the square root of the sample size.

Neuronal Tuning and Selectivity Analysis. We only included neurons in all 
following analyses that had an average firing rate of at least 0.5 Hz in a relevant 
task window (baseline period onset until motor planning period offset) and were 
recorded for at least two correct trials for each of 20 specific trial conditions (5 
instruction numbers × 2 stimulus protocols × 2 stimulus conditions).

Neuronal activity during the instructing stimulus period was evaluated in a 
900 ms time window from 100 ms prior to stimulus onset until 200 ms after 
stimulus offset. The analysis window thus reached 200 ms into the motor planning 
period but based on the neurons’ response latency we only analyzed activity 
related to the stimulus presentation and visual offset. The mean visual latency 
for crow NCL neurons is 144 ms (42). Therefore, the neuronal activity relative 
to the physical task periods is delayed by this amount of time (i.e., 144 ms, on 
average). The activity of the first 200 ms of the motor planning period has not 
been previously reported or analyzed (cf. to ref. 33).

A two-factor sliding-window ANOVA (200 ms window, 10 ms step-size,  
P < 0.05) was performed in this 900 ms instructing stimulus period window. We 
assessed single-neuron selectivity to the task variables “number” (instruction 
numbers 1 to 5) and “protocol” (dots and signs). As stimulus condition (standard 
and control) differed for dot and sign protocols, it was not included as a factor 
into the ANOVAs. If there was a significant main effect for the number factor in 
more than 11 consecutive time-bins (at least 300 ms interval), this neuron and 
respective interval were categorized number-selective. Only the intervals contain-
ing the largest modulation in firing for different instruction numbers were used 
if there were multiple such selective intervals for a neuron.

For every number-selective neuron and both stimulus protocols, the instruc-
tion number eliciting the highest firing rate in the neuron’s respective selective 
interval was termed the preferred numerical value. We constructed neuronal 
response functions by normalizing a neuron’s average firing rate to its most- and 
least-preferred instruction number. The populations’ response functions were 
yielded by averaging tuning function of all number-selective neurons prefer-
ring each individual numerical value in each stimulus protocol. The populations’ 
average tuning functions were also expressed as a function of absolute numerical 
distance. Pairs of numerical distances were statistically compared using Wilcoxon 
signed-rank tests.

Correlation Analysis. A correlation analysis was used to compare the tuning 
of individual neurons between both stimulus protocols, that is, dots and signs. 
The following steps were performed for each number-selective neuron in sliding 
window fashion (200 ms windows with 10 ms steps, from 400 ms prior to instruct-
ing stimulus onset until 300 ms after stimulus offset). First, for each cell and in 
each time-bin, we sampled 4 trials per instruction number and stimulus protocol 
at random (4 trials x 5 instruction number x 2 stimulus protocols, amounting 
to 40 sampled trials). Second, we constructed tuning curves from the sampled 
trials by averaging firing rate in the 200 ms time window over trials of the five 
instruction numbers, separately for the dot and sign protocol. Third, the cross-
correlation coefficient (CC) from these tuning functions was calculated according 
to the following formulae:

	

[1]CC=

∑5

n=1
(tdot(n)− tdot)(tsign(n)− tsign)

�

∑5

n=1
(tdot(n)− tdot)

2

�

∑5

n=1
(tsign(n)− tsign)

2

,

	

[2]tdot =
1

5

5
∑

n=1

tdot(n),

	

[3]tsign =
1

5

5
∑

n=1

tsign(n),

where n are the instruction numbers between 1 and 5, and tdot(n) and tsign(n) are 
the tuning functions for the dot and the sign protocol, respectively. The CC ranges 
between 1 for perfect correlation and −1 for perfect anticorrelation and is 0 when 
there is no correlation. To compare CCs yielded in such way to CCs expected by 

chance (called shuffled predictor, or SP, values), we shuffled instruction number 
labels for each trial sampled in the first step, thus eliminating the relationship 
between a cell’s firing and the instruction number. We then constructed dummy 
tuning curves according to the second step and calculated SP values from those 
as in the third step. We repeated the above steps 1,000 times, each time with a 
different set of randomly drawn trials. Thus, we ended up with distributions of 
1,000 CCs and SPs for each cell in each time-bin.

To quantify the similarity in the cell’s tuning between both stimulus protocols 
compared to random tuning due to chance, we calculated ROC with distributions of 
CC and SP values. The ROC measures the separability of two distributions with the 
AUROC curve summarizing how well these distributions are separated. An AUROC 
value of 0.5 indicates largely overlapping distributions and, in this instance, would 
mean that the tuning of a given cell at a given time point is as similar between 
stimulus protocols as expected by chance. On the other end, an AUROC value of 
1 indicates perfectly separated distributions, and here, would indicate identical 
tuning to numerical values of dots and signs for a given cell at a given point in 
time. We used the CCs as reference distributions for calculating the AUROCs. We 
determined a threshold for significance as the mean AUROC during the baseline 
period plus 3 times its SD. Any time-bin’s AUROC value exceeding this threshold 
was indicating a cross-correlation significantly above chance, and any neuron with 
such significant time windows was further termed “association neuron”.

Error Trial Analyses. To investigate whether failure to properly associate signs 
with their numerical value influences the behavioral success of a trial, we adapted 
the above cross-correlation analysis to error trials, in which the crows were produc-
ing an incorrect number of enumeration pecks. Similar to above, we calculated CCs 
for all association neurons in a time-resolved manner (identical to above sliding 
window parameters) between tuning curves of correct trials in the dot protocol 
and tuning curves yielded from error trials in the sign protocol. Since the crows 
produced few errors, particularly for instruction number 1, tuning curves were 
constructed only for instruction numbers with recorded error trials (but at least two 
instruction numbers). These error CCs were compared to CCs calculated from correct 
trials from both stimulus protocols, restricted to the same instruction numbers.

Time-Resolved Classifier Analyses. We performed time-resolved classifica-
tion analyses within and across stimulus protocols using linear multi-class SVM 
classifier models (63). For this, we considered only neurons that were recorded 
for at least 10 correct trials per class, i.e., instruction number, in both stimulus 
protocols (that is, 10 trials x 5 instruction numbers x 2 stimulus protocols, at least 
100 recorded trials). We used a sliding window (200 ms length, 20 ms step size, 
from baseline onset until 300 ms after motor planning offset) and trained and 
tested multiple SVM models in each of these windows. In each such window, 
we trained models on normalized, average firing rates (z-scoring parameters 
yielded from the training subset) in either dot or sign trials, used one-to-one 
classification to deal with 5 classes, and followed a scheme similar to a 10-fold 
cross-validation: Nine trials per class of one protocol were used for training and 
one trial per class of either the same protocol (within protocol), or the respective 
other protocol (across protocol) were then used for testing the SVM models per 
split. This was repeated 10 times, each time with another split of trials for training 
and testing. The number of correct classifications (labels predicted by the model 
equals the true label) divided by the number of overall classifications over all 
10 cross-validation folds yields an accuracy measure of classifier performance. 
Accordingly, we calculated one accuracy measure for each specific condition (two 
within protocol conditions, i.e., training and testing on trials of the same stimulus 
protocol, and two cross-protocol conditions) per time-bin. We repeated this pro-
cedure 50 times, each time with a new subset of randomly drawn trials for each 
neuron. To assess chance level classifier performance for each of the four specific 
conditions, we repeated the above procedure (including 10-fold cross-validation 
and z-scoring) with permuted trial labels, shuffling 20 times per resample (50 
resamples × 20 shuffles = 1,000 reshuffles for chance level accuracy distribution).

We also trained SVM classifier models on correct trials pooled over stimulus 
protocol and tested these models on the activity of previously unseen correct, and 
error trials. As this procedure is identical to the above, we only describe deviating 
aspects in the following. We only considered neurons that had at least one error 
trial per instruction number. This number was small because there were very few 
incorrect trials for the numerical value 1. Nine correct trials per class were used for 
training, and either one correct or one incorrect trial per class was then used for 
testing the SVM models per split. Again, this was repeated 10 times, each time D
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with another split of trials. We resampled trials 1,000 times. All other procedures 
for this classifier were identical to the analyses above. We thus receive two time-
resolved accuracy measures from this analysis: one for the autoclassification of 
correct trials and one for the prediction of incorrect trial labels from models trained 
on firing rates of correct trials.

Data, Materials, and Software Availability. All study data are included in 
the main text.
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