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SUMMARY
Arithmetic is a cornerstone of scientifically and technologically advanced human culture, but its neuronal
mechanisms are poorly understood. Calculating with numbers requires temporary maintenance and manip-
ulation of numerical information according to arithmetic rules. We explored the brain mechanisms involved in
simple arithmetic operations by recording single-neuron activity from the medial temporal lobe of human
subjects performing additions and subtractions. We found abstract and notation-independent codes for
addition and subtraction in neuronal populations. The neuronal codes of arithmetic in different brain areas
differed drastically. Decoders applied to time-resolved recordings demonstrate a static code in hippocam-
pus based on persistently rule-selective neurons, in contrast to a dynamic code in parahippocampal cortex
originating from neurons carrying rapidly changing rule information. The implementation of abstract
arithmetic codes suggests different cognitive functions for medial temporal lobe regions in arithmetic.
INTRODUCTION

Mental arithmetic is an intricate skill and a hallmark of our scien-

tifically advanced culture. Calculating with numbers requires

semantic knowledge about numbers, online maintenance of

numerical values, and their goal-directed transformation accord-

ing to calculation rules. Therefore, mental arithmetic engages

multiple brain systems, including those for the semantic

representation of numeric values, the learning and memory of

mathematical principles, and the cognitive control of mental

operations.1–4

Studies in humans1,2,5 and nonhuman primates6–9 have indi-

cated parts of the parietal and prefrontal cortices as core number

representation and manipulation system. In particular, arithmet-

ically selective brain areas have been identified in the parietal

cortex of patients using intracranial electrocorticography

(ECoG) recordings that measure summed and synchronized

postsynaptic potentials (bulk tissue mass potentials).10,11 More-

over, direct electrical stimulation studies in human patients have

shown a specific arrest of counting and calculation performance

during transient perturbation of parietal and frontal regions.12–14

The latter investigations, in particular, suggest a causal involve-

ment of parietal and frontal cortical regions in mental arithmetic.

However, recent findings implicate a wider cortical number

network beyond parietal and frontal association cortices, also

integrating the temporal lobe. Direct evidence resulted from

ECoG studies in human patients; these recordings reconfirmed

the presence of addition-selective locations not only in the pos-

terior parietal cortex but also in the ventral temporal cortex.10,11
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In addition, functional neuroimaging implicated medial temporal

lobe regions in the development of arithmetic fact knowl-

edge,3,15–17 including knowledge about arithmetic operators.18

Moreover, performance enhancements in arithmetic fact

retrieval are related to functional connectivity in hippocampal-

neocortical circuits, including hippocampal-frontal16,19 and hip-

pocampal-parietal16 connectivity. Hippocampal volume and

functional connectivity of the hippocampus with dorsolateral

and ventrolateral prefrontal cortices predict math tutoring suc-

cess in children,20 and reduced parahippocampal gray matter

is associated with math learning disabilities (‘‘developmental

dyscalculia’’).21 Finally, we have recently shown directly by intra-

cranial single-neuron recordings that the humanmedial temporal

lobe (MTL) contains neurons that selectively respond to numer-

ical values of different (symbolic and nonsymbolic) visual for-

mats.22 Here, we explored how single neurons in the human

MTL represent the arithmetic addition and subtraction rules pre-

sented in different symbolic notations.

As a neuronal representation of the abstract rules applied to

perceptual categories, rule-selective neurons have been identi-

fied in nonhuman primates.23 They increase firing rates when a

subject follows a specific rule but remain silent for alternative

rules.24,25 To bridge longer working memory delays necessary

for mental arithmetic, two fundamentally different neuronal co-

des are conceivable: neurons might be tuned to a specific calcu-

lation rule and maintain this representation over long time pe-

riods via persistent firing. In this case, a decoder (a statistical

classifier) trained on neuronal activity during a brief moment

can successfully generalize across different time points. This
rch 28, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1275
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Figure 1. Behavioral task and example stimuli

(A) Experimental design of the calculation task. After visual fixation on the screen, stimuli were presented sequentially in the order operand 1—operator—operand

2. Each stimulus phase was followed by a brief delay. Afterward, the subjects were required to indicate the result of the calculation (ranging from 0 to 9) on an

Arabic numeral panel and subsequently received feedback indicating whether the result was correct (‘‘richtig’’) or false (‘‘falsch’’).

(B) Example number stimuli for the nonsymbolic (numerosity) and symbolic format (numeral) for standard and control protocols. Numerical values of operand 1

ranged from 1 to 5; those of operand 2 ranged from 0 to 5.

(C) Example stimuli for the different mathematical rules, indicated by arithmetic signs (‘‘+,’’ ‘‘–’’) and written words (‘‘und’’ [add], ‘‘weniger’’ [subtract]).
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type of coding is known as static coding. Alternatively, neurons

may fire sparsely and rapidly change tuning to calculation rules

over time.26 Under this scenario, a decoder trained on neuronal

activity during one time point cannot generalize to the next. This

has become known as dynamic coding.27 By applying decoders

to time-resolved recordings, we probe the codes for abstract

arithmetic rules in the human MTL.

RESULTS

We asked nine human participants to perform simple addition

and subtraction tasks on a computer display with operand
1276 Current Biology 32, 1275–1284, March 28, 2022
values ranging from 0 to 5 (Figure 1A, see STAR Methods).

Both operands were displayed with equal probability either as

dot numerosities (nonsymbolic) or Arabic numerals (symbolic).

Numerosities were shown in standard (variable dot size and

arrangement) and control (constant total dot area and dot

density) displays to control for non-numerical visual parameters;

Arabic numerals were shown in two (standard and control)

font types to ensure the generalization of symbols across

visual shapes (Figure 1B). Addition and subtraction rules were

instructed by two different notations, either as arithmetic signs

(+, –) or written words (German ‘‘und’’ and ‘‘weniger,’’ indicating

‘‘add’’ and ‘‘subtract’’). The two rule notations allowed us to later



Figure 2. Neural responses of rule-selective neurons

(A–D) Across-trial responses of four example neurons responding with increased firing rate to the ‘‘addition’’ rule (A, B) and the ‘‘subtraction’’ rule (C, D),

regardless of the concrete cue indicating the rule. The left small panels depict a density plot of the recorded action potentials (color darkness indicates the number

of overlapping wave forms according to color scale at the bottom). Top panels show single-cell dot-raster plots for many repetitions of the rule cue (each line

represents a trial and each dot represents an action potential, color coded according to the two rules and the two rule cues), and averaged instantaneous firing

rates (spike-density histograms) are shown below. Blueish colors depict subtraction (for two different rule cues); reddish colors correspond to addition. Insets

show average activity per rule cue during the rule discrimination period (gray shaded area), as defined by statistical significance in the ANOVA. Error bars denote

SEM.
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dissociate neural activity related to the visual properties of the

cue (sign or word) from the abstract rule that it represented

(addition versus subtraction) (Figure 1C). The participants’

average performance was close to perfect (98.5% ± 0.6%) and

comparable between addition and subtraction (p = 0.97; t test).

Single neurons respond to calculation rules
We recorded the action potentials of a total of 585 single neurons

in the MTLs of the participants performing the calculation tasks:

126 neurons in parahippocampal cortex (PHC), 199 neurons in

hippocampus (HIPP), 107 neurons in entorhinal cortex (EC),

and 153 neurons in amygdala (AMY). As an obligatory but not

sufficient prerequisite for mental calculation, MTL neurons

were previously shown to represent numerical cardinality of the

first operand.22 We predicted that single neurons and neuronal

populations also encode mentally performed additions and

subtractions.

Using a multi-factor analysis of variance (ANOVA) (see STAR

Methods), we first identified rule-selective neurons that selec-

tively increased firing rates to either the addition or subtraction

rule after the instruction of the calculation (‘‘calculation rule’’)

(Figure 1A). After the presentation of the calculation rule, addi-

tion-selective neurons enhanced firing whenever an addition
was instructed (Figures 2A and 2B; reddish colors); whereas

subtraction-selective neurons showed a specific increase in

activity whenever a subtraction was cued (Figures 2C and 2D;

blueish colors).

The proportion of neurons selectively tuned to calculation

rules differed for different task periods and MTL areas (Figure 3).

In the ‘‘calculation rule’’ period, a small but significant proportion

of MTL neurons (4.8%; 28/585) was modulated by the arithmetic

rule (p < 0.001; binomial test with pchance = 0.01). Most of these

neurons (3.5%; 20/585) showed activity that varied exclusively

with the arithmetic rule (p < 0.001; binomial test), irrespective

of the cue indicating that rule (i.e., no significant main effect

for the factor cue, or any other factor) (Figure 3A, first column).

Only PHC (7%; 9/126) and HIPP (4%; 7/199), but not EC and

AMY, showed proportions of such exclusively rule-selective

neurons higher than expected by chance (p < 0.05; binomial

test with pchance = 0.01, Bonferroni-corrected for multiple tests

across areas, n = 4; Figures 3B and 3D). The overall proportion

of rule-selective neurons increased in the ‘‘rule delay’’ period in

which the value of operand 1 and the calculation instruction

needed to be held in working memory to solve the task. Here,

6.0% (35/585) of MTL neurons were modulated by the arithmetic

rule, with 5.3% (31/585) being exclusively rule-selective (both
Current Biology 32, 1275–1284, March 28, 2022 1277



Figure 3. Neuronal selectivity of MTL single units

(A–D) Proportions of single units significant to different task factors for different MTL regions: (A) total population, (B) parahippocampal cortex, (C) entorhinal

cortex, (D) hippocampus, and (E) amygdala. ANOVAs for the different task phases were evaluated at a = 0.01. Neurons with an effect for ‘‘arithmetic rule,’’ but no

concurrent other main effects are termed ‘‘exclusively rule-selective’’ (‘‘Only Rule’’); same applies for factor ‘‘rule cue.’’ Numbers of significant neurons were

subjected to a Bonferroni-corrected (n = 4) binomial test; asterisks indicate significance (*p < 0.05, **p < 0.01, ***p < 0.001). See also Figures S1 and S2.
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p < 0.001, binomial test; Figure 3A, second column). During this

period, all MTL areas contained a significant proportion of exclu-

sively calculation-rule-selective neurons (EC: 7%, 7/107; HIPP:

5%, 10/199; PHC: 5%, 6/126; and AMY: 5%, 8/153; all

p < 0.01, Bonferroni-corrected binomial test) in addition to neu-

rons coding other task-relevant factors (Figures 3B–3E). The

proportion of rule-selective neurons dropped to chance level

in the subsequent task periods (‘‘operand 2’’ and ‘‘delay 2’’)

(Figure 3A). Instead, the neurons represented the task factors

additionally introduced with trial progression (for instance, the

numerical value of operand 2) (Figure 3, third and fourth

columns). In sum, a small but significant proportion of neurons

encoded arithmetic rules after the presentation and memoriza-

tion of the calculation rule prior to the presentation of operand

2. A separate analysis of the neurons in the left and right

hemisphere qualitatively confirmed these results for each

hemisphere in all regions (Figure S1). Note that the proportions

of neurons showing significant selectivity during different trial

periods do not generally represent the same neuronal popula-

tions (see Figure S2).

Cue-independent representation of addition and
subtraction rules
MTL neurons showed variation in the time point and duration of

rule selectivity across the task period. With increasing task

complexity later in the trial, they also exhibited selectivity to

several task factors, seeminglymultiplexing the different informa-

tion required tosolve the task.Therefore,we focusedourattention

on the collective properties of groups of neurons, or ‘‘neuronal

populations.’’ This allowed us to read out (or ‘‘decode’’) informa-

tion not only from an individual neuron but from a population of

neurons that thesubjects canbase their decisionson. Incombina-

tion with decodingmethods, such as statistical classifiers, this al-

lows to predict the accuracy and abstractness of arithmetic rule

representations on a trial-by-trial basis.

To explore whether this variable activity yielded a reliable

read-out of arithmetic rules, we adopted a machine-learning

approach. We trained support vector machine (SVM) classifiers

to discriminate between addition trials (‘‘und’’ [add] and ‘‘+’’

cues combined) and subtraction trials (‘‘weniger’’ [subtract]

and ‘‘–’’ cues combined) across trial periods based on firing rates

(see STAR Methods). The classifiers were then tested on novel

data from the same neurons to explore how well they could pre-

dict the rules based on the information extracted from trials used

during training. Cluster permutation tests (p < 0.05) were used to

identify the trial intervals of classification accuracies significantly

above chance level (50%).

We found long time intervals for which rule information could

be successfully decoded in all MTL regions (black horizontal

bars in Figures 4A–4D). Consistent with the single-cell analysis,

we observed strong and long-lasting effects in PHC (Figure 4A;

two selective periods interrupted by a non-selective period)

and HIPP (Figure 4C). In HIPP particularly, the calculation rule

was continuously decoded with high accuracy from rule onset

until the end of the trial (Figure 4C). By contrast, rather weak

and short-lived significant classification performance was

observed in EC (Figure 4B) and AMY (Figure 4D). Separate anal-

ysis of left and right hemisphere qualitatively confirmed these re-

sults for PHC and HIPP (Figure S3).
We wanted to find out whether the calculation rules could be

decoded irrespective of the rule cues, as would be expected

for abstract rule coding. Therefore, we explored classification

accuracies for individual rule cues during the previously found

significant time intervals shown in Figures 4A–4D. We trained

an SVM classifier using the firing rates combined for both rule

cues per calculation rule in the individual significant windows

for each MTL area. We then tested whether the SVM could pre-

dict the correct calculation rule from novel trials based on either

one of the two applied cues per calculation rule (i.e., signs and

words).

We found that classifier performance for addition and subtrac-

tion across word and sign rule cues was significant in all MTL

areas (p < 0.05; permutation test compared with shuffled data la-

bels). Highest classification accuracies were found in HIPP

(addition: 74% and subtraction: 73%; Figure 4G) and PHC (addi-

tion: 65% and subtraction: 68%; averaged across both signifi-

cant time windows; Figure 4E) followed by EC (addition: 65%

and subtraction: 61%; Figure 4F) and AMY (addition: 58% and

subtraction: 63%; Figure 4H). In AMY, performance was mainly

due to accurate encoding of one specific cue (the ‘‘weniger’’

[subtract] cue), whereas classification accuracies were relatively

low for the other three cues. Overall, information about the calcu-

lation rules was encoded irrespective of the rule cues prompting

addition and subtraction, respectively.

Cross-temporal calculation rule decoding (static-
dynamic)
Next, we explored the neuronal codes of arithmetic rules. By

applying decoders to time-resolved recordings, we asked

whether the code remained stable across trial time or rather

changed dynamically (Figures 4I–4L). To this end, we performed

a temporal cross-training analysis. We trained SVMclassifiers on

the firing rates from a given time point and tested them during

other time points of the trial. This analysis was again performed

separately for the four MTL areas, and the accuracy results were

plotted in a confusion matrix spanning the trial times of classifier

training against the trial times of classifier testing.

In PHC, we observed that classifiers trained during a specific

time interval after rule cue presentation were only able to decode

the arithmetic rule in the same time interval (Figure 4I). This

resulted in high classification accuracies only along the main

diagonal of the confusion matrix. The classifiers’ inability to

generalize the calculation rules across trial time periods indi-

cates a dynamic neuronal code in PHC based on neurons that

rapidly change their tuning properties with time.

A rather different picture emerged for HIPP (Figure 4K).

Significant cross-temporal generalization from the end of the

rule cue period all the way up to the end of the trial was present.

A classifier trained on firing rates observed, e.g., during the rule

delay, was still able to decode the calculation rule when tested

on activity recorded during the operand 2 or even delay 2

phases. This resulted in a square-like accuracy pattern in the

cross-temporal confusion matrix. This pattern argues for a static

neuronal code in HIPP based on tuned neurons that remained

stable across time throughout the trial.

In EC, cross-temporal generalization was weak and observed

only to a small extent (Figure 4J). A square-like accuracy pattern

emerged only around the rule delay. This suggests relatively
Current Biology 32, 1275–1284, March 28, 2022 1279



Figure 4. Rule decoding using a support vectormachine (SVM) classifier. Decoding performance for the four differentMTL regions (columns)

(A–D) Classification accuracy for decoding arithmetic rule information when training an SVM classifier on the instantaneous firing rates across the trial period. The

dashed line represents chance level (50% for two classes). Black bars above the data and areas shaded in gray indicate significance (p < 0.05) when testing

against performance for SVMs trained on shuffled data in a permutation test. Abbreviations at the axes indicate task phases: F, fixation;O1, operand 1;D1, delay

1; CR, calculation rule; RD, rule delay; O2, operand 2; and D2, delay 2.

(E–H) Confusion matrices derived from training an SVM classifier on firing rates averaged across the significant time windows in (A–D), respectively. (E) shows the

average of the confusion matrices obtained for each significant window (depicted in A).

(I–L) Accuracy when training an SVMclassifier at a given time point of the trial and testing on another one (themain diagonal of thematrix corresponds to the curve

in [A–D]). Black contours indicate significance (p < 0.05) in a permutation test. See also Figures S3–S5.
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stable calculation rule coding for as long as only the calculation

rule was kept in workingmemory and before the second operand

was presented. In AMY, neurons did not encode arithmetic

rules abstractly (see Figure 4H). In addition, the cross-temporal

classifier analysis showed only a mild accuracy diagonal

during the rule delay and the operand 2 periods (Figure 4L).

Both findings preclude statements about coding dynamics

in AMY.

Theobserved responsepatterns, inparticular a dynamiccode in

PHC contrasted by a static code in HIPP, were still present after

equalizing the numbers of neurons for each MTL area (Figure S4;

see STARMethods). Information about the rule cueswere only en-

coded during cue presentation in PHC (Figure S5), which further

confirmed the abstractness of the calculation rule coding.

Cross-notation decoding of addition and subtraction
The previous analyses showed that the population of neurons

differentiated between addition and subtraction rules and
1280 Current Biology 32, 1275–1284, March 28, 2022
indicated that calculation rules were encoded irrespective of

the rule cues. As a final step, we put this observation to the

test and explored whether MTL neurons generalize calculation

rules across rule notations.

We performed a time-resolved sliding-window decoding

analysis and trained a SVM classifier on the trials of one rule

notation and tested it on the other rule notation for the same

calculation rule. First, we used all the word trials (‘‘und’’ [add]

and ‘‘weniger’’ [subtract]) as training data and all the sign trials

[‘‘+’’ and ‘‘–’’] as test data [henceforth called ‘‘word sign’’])

and performed the same analyses as before (i.e., temporal

cross-training classification and verification via fixed-window

analysis). Then, we analyzed the generalization in the opposite

direction, i.e., using all sign trials as training data and all word

trials as test data (in the following called ‘‘sign word’’) and

repeating the whole procedure. Generalization was judged

successful if (1) synchronous intervals of significant classification

for both directions of generalization were found (Figures 5A–5D)



Figure 5. Generalization between arithmetic rule notations using an SVMclassifier. Classifier performance for the four differentMTL regions

(columns)

(A–D) Classification accuracy when training an SVM on the instantaneous firing rates across the trial period for both directions of generalization. The dashed line

represents chance level (50% for two classes). Light and dark green bars above the data indicate significance (p < 0.05) in a permutation test for both test

directions (‘‘word sign’’ and ‘‘sign word,’’ respectively). The areas shaded in gray indicate the synchronous time windows used for the fixed-window

classification analysis. Abbreviations at the axes indicate task phases: F, fixation;O1, operand 1; D1, delay 1;CR, calculation rule; RD, rule delay;O2, operand 2;

and D2, delay 2.

(E–H) Accuracy in temporal cross-training analysis when a classifier is trained on trials showing word rule cues and tested on trials showing sign rule cues (the

main diagonals of thematrices correspond to the dark green curves in [A–D]). Black contours indicate significance (p < 0.05) when testing against performance for

SVMs trained on shuffled data in a permutation test.

(I–L) Accuracy in temporal cross-training analysis when a classifier is trained on trials showing sign cues and tested on trials showing word cues (the main di-

agonals of the matrices correspond to the light green curves in [A–D]). Same conventions as in (E–H).
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and (2) performance in these synchronous intervals was signifi-

cant (permutation test, p < 0.05) for each arithmetic rule after

averaging classification accuracies across both directions of

generalization.

Significant cross-notation rule decoding was present in PHC

(Figure 5A) and HIPP (Figure 5C). In both areas, extended and

overlapping intervals of significant rule classifications for both

test directions (‘‘word sign’’ and ‘‘sign word’’) emerged af-

ter rule cue offset and up to the end of the trial (significant

phases are indicated by light and dark green horizontal bars

in Figures 5A and 5C, with synchronous intervals indicated by

gray shaded areas). In PHC, the accuracy of transfer was

57% for addition and 64% for subtraction (Figure 5A). In

HIPP, transfer was even better and reached an average accu-

racy of 73% for addition and 69% for subtraction (Figure 5C). In

both PHC and HIPP, the transfer for both calculation rules and

both test directions were individually significant and thus

pooled.
By contrast, the cross-notation decoding of calculation rules

failed in AMY and EC. In AMY, classification accuracy remained

at chance level throughout the whole trial for both directions of

generalization (Figure 5D). In EC, cross-notation decoding briefly

transferred for the direction ‘‘word sign,’’ but not for the direc-

tion ‘‘sign word,’’ and therefore failed our generalization crite-

rion (Figure 5B). Thus, activity in PHC and HIPP did generalize

arithmetic rule information across notations, whereas AMY and

EC did not.

To explore the dynamics of rule codes during cross-notation

generalization, we again employed a temporal cross-training

analysis separately for the two generalization directions. The

resulting confusion matrices confirmed the earlier findings

(albeit with weaker effect size due to the reduced data dimen-

sionality). In HIPP, they showed a static rule code for both nota-

tion generalization directions from rule cue offset to the end of

the trial (indicated by the square-like significant classification

pattern) (Figures 5G and 5K). By contrast, a dynamic code
Current Biology 32, 1275–1284, March 28, 2022 1281
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emerged for both notation generalization directions in PHC, as

evidenced by significant classification performance along the

main diagonal of the matrices (Figures 5E and 5I). The findings

for EC and AMY were unreliable due to the lack of rule-notation

generalization found in these areas (Figures 5B and 5D). In

summary, neuron populations in both PHC andHIPP generalized

between calculation rule notation but exhibited fundamentally

different rule codes.

DISCUSSION

Our findings demonstrate that the activity of neurons in the MTL

carries sufficient information to allow a statistical classifier to

discriminate between addition and subtraction instructions

during mental calculation. After having been trained on activity

duringmental processing of one rule notation, decoding general-

ized to another notation cueing the same arithmetic operation.

This generalization observed for arithmetic signs and words im-

plies an abstract and notation-independent representation of

arithmetic rules. Therefore, our research unveils a neuronal corre-

late for mental arithmetic, which generalizes between calculation

tasks involving learned mathematical symbols.

Number and calculation recruit the MTL
Our discovery of arithmetic rule selectivity in MTL is in agreement

with a growing body of studies that suggests that number and

calculation recruit an interconnected network of cortical areas,

including parts of the temporal lobe. We have recently shown

directly by intracranial single-neuron recordings that the human

MTL contains a significant percentage of neurons selectively

tuned to numerical values.22 This finding in humans concurs with

the numerical tuning of hippocampal neurons in nonhuman

primates.28 Moreover, using functional imaging, the MTL has

been shown to be involved in arithmetic skill acquisition andmem-

ory-based problem-solving strategies during childhood.15,16,20

Similarly, ECoG studies in human patients reported addition-se-

lective locations not only in the posterior parietal cortex but also

in the ventral temporal cortex.10,11 Together, these data implicate

a wider cortical number network beyond parietal and frontal

association cortices, also integrating the temporal lobe.

The MTL is suited to transform and manipulate representa-

tions of incoming numerical information.22 It is highly intercon-

nected with the frontal and parietal areas29,30 that constitute

the core number system involved in perceiving the number of

sensory stimuli.2,7,31 The prefrontal lobe, in particular, is associ-

ated with representing abstract rules and concepts, information

that can be directly accessed by MTL.23 Therefore, MTL could

mediate the transformation of perceived numerical information

in a workingmemory buffer. Interestingly, as an associative brain

area, the MTL also contains sensorimotor neurons that are

activated by hand-grasping observation and execution.32 This

opens the possibility that MTL may play a role in the sensori-

motor translation of perceived and produced number,33 a

speculation yet to be explored.

Numerical rule-selective neurons
Although the observed rule-selective neurons encode arithmetic

rules, this is not to say that some of these neurons may not also

become engaged in encoding other types of rules that we have
1282 Current Biology 32, 1275–1284, March 28, 2022
not explored. However, recordings show that rule-selective neu-

rons in the nonhuman primate exhibit a substantial degree of

specialization and preferentially respond only to quantitative

rules applied to a specific magnitude type.34 Therefore, we think

that the majority of rule-selective neurons specifically and

genuinely encode arithmetic rules.

So far, the neuronal correlates of addition and subtraction

have not been studied in monkeys. However, what has been

investigated is how single neurons respond to more basic

mathematical operations, namely, ‘‘greater than’’ (>) and ‘‘less

than’’ (<) operations.6,24,34 In each trial, monkeys had to flexibly

switch between these two rules according to rule cues and had

to choose either a larger (in the case of the ‘‘greater than’’ rule) or

smaller numerosity (in the case of the ‘‘smaller than’’ rule) than

the one they had seen in the beginning of a trial. Recording

from frontal and parietal areas, we found single neurons that

responded selectively (by increased firing rates) to one of the

two rules. Rule selectivity was stronger and more abundant in

the frontal lobe than in the parietal lobe.24 In monkeys, the frontal

association areas are thus more important when it comes to

nonsymbolic mathematical rules. This is consistent with imaging

results in humans, where areas specific to calculation rather than

simple number comparison are primarily found in the frontal

lobe.2

The numerical coding capacities of such neurons do not seem

to be fixed. Although neurons selective to numerical rules were

recorded in brain areas in which previous studies had shown a

relatively high proportion of numerosity-selective neurons,7–9

the number of neurons representing pure numerical values

were reduced when monkeys applied numerical rules.24,34 This

indicates that the neurons in the fronto-parietal number network

dynamically encode different types of numerical information as a

function of task demands. In the same vein, flexible numerical

coding may apply to the MTL during a (top-down) interplay

with the frontal lobe, depending on the precise mathematical

task at hand.

Static and dynamic calculation codes
Mental calculation is a classic working memory task, and

although working memory has traditionally been attributed to

the prefrontal cortex,35 more recent data suggest that the MTL

may also be important in working memory tasks36–38 and that

it is part of a brain-wide network subserving working memory.39

Previous intracranial recording studies show that the delay

activity of a selection of MTL neurons correlated with memory

load and predict the successful retrieval of working memory

contents.39,40 These neurons’ persistent activation maintained

the same stimulus preference throughout several seconds of

temporal gaps. This type of activity with robust across-time

generalization is characteristic of a static code that we also

observed in the hippocampus during mental calculation.

In contrast to the static code in hippocampus, we observed

a clear dynamic code in PHC when processing calculation rules.

Such a dynamic code based on sparsely bursting neurons

supports the theory of activity-silent working memory.41 It

proposes that working memory can also be supported by

short-term changes in synaptic weights. Synaptic weight

changes are involved in episodic memory, which is why

activity-silent working memory might be reminiscent of—or



ll
OPEN ACCESSArticle
even part of—episodic memory.42 This fits with the finding

that areas of the MTL are not only critically implicated in

episodic memory but also important during working memory

tasks.36–40,43 Direct observation of neuronal reactivation after

complete activity silence has recently been reported in a

different working memory task in the human MTL.44 Static and

dynamic codes are not incompatible. Stable persistent activa-

tion with robust across-time generalization can exist in the pres-

ence of dynamically changing neuronal representations.45,46

Neuron recordings in human39,40,43 and nonhuman pri-

mates,47–49 as well as computational modeling,50–52 suggest

different cognitive functions for these two codes for working

memory: although a dynamic code seems to suffice for short

maintenance of more implicit information in memory, the intense

mental manipulation of the attended working memory contents

may require a static code. Following this logic, parahippocampal

cortexmay represent a short-termmemory of the arithmetic rule,

whereas downstream hippocampus may ‘‘do the math’’ and

process numbers according to the arithmetic rule at hand.

More fine-grained analyses, ideally combined with perturbation

approaches,53 will help to decipher the individual roles of brain

areas and neuronal codes in mental arithmetic.
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S., and Parvizi, J. (2016). Mapping human temporal and parietal neuronal

population activity and functional coupling during mathematical cognition.

Proc. Natl. Acad. Sci. USA 113, E7277–E7286.

11. Pinheiro-Chagas, P., Daitch, A., Parvizi, J., and Dehaene, S. (2018). Brain

mechanisms of arithmetic: A crucial role for ventral temporal cortex.

J. Cogn. Neurosci. 30, 1757–1772.

12. Della Puppa, A., De Pellegrin, S., d’Avella, E., Gioffrè, G., Munari, M.,
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Data and custom-built MATLAB code can be found in a GitHub repository (https://github.com/EstherKutter/Neuronal-Codes-For-

Arithmetic-Rule-Processing-In-The-Human-Brain).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nine neurosurgical patients (4 male, all right-handed, mean age 43.3 years) undergoing treatment for pharmacologically intractable

epilepsy participated in the study. Informed written consent was obtained from each patient. All studies conformed to the guidelines

of the Medical Institutional Review Board at the University of Bonn, Germany. Other parts of the current data set were published in a

previous publication.22

METHOD DETAILS

Experimental Task and Stimuli
Subjects performed a calculation task that required them to calculate the result of a simple arithmetic problem (Figure 1A). During

experimental sessions, subjects sat in bed, facing a touch-screen laptop (display diagonal 11.7 in, resolution 1366x768 px) on

which stimuli were presented at a distance of approximately 50 cm. They were not informed about hypotheses or purposes of the

experiment, in order to avoid any bias.

Each trial began after a 500 ms fixation phase. Stimuli were presented successively in the order operand 1 – operator – operand 2,

for 500 ms each, followed each by a 800 ms delay phase. Afterwards, subjects responded in a self-paced manner by touching the

number matching the result of the calculation on a number pad showing the arabic numerals 0 to 9 that was presented on the screen.

After a 500 ms feedback display (‘richtig’ [correct] or ‘falsch’ [false]) the next trial was started automatically.

All stimuli were presented within a filled gray circle (diameter approx. 6� of visual angle) on a black background. During fixation and

delay phases, we presented a white fixation spot in the center of the gray area. During stimulus presentation, the fixation spot dis-

appeared to avoid confusion with nonsymbolic stimuli and to distinguish it clearly from the nonsymbolic ‘zero’-stimulus that was

included as a potential operand 2-stimulus for control purposes.

Numerical values of operand 1 ranged from 1 to 5, and were in two visual ‘formats’, either ‘nonsymbolic’ arrays of randomly placed

black dots of varying sizes with the number of dots corresponding to the respective numerical value (‘numerosities’), or ‘symbolic’

black Arabic digits at randomized locations (‘numerals’). Number stimuli of operand 2 ranged from 0 to 5, and were the same as for

operand 1. The nonsymbolic ‘zero’-stimulus was presented as the empty gray circle without fixation spot.
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We used two ‘protocols’, standard and control displays, for both nonsymbolic and symbolic number formats (Figure 1B) in order to

control for low-level visual features. The standard nonsymbolic numerosity displays consisted of dots at randomized locations and of

pseudo-randomly varied sizes (diameter 0.3� to 0.8� of visual angle); in the control displays, we equated the overall screen area and

density of the dots across numerosities. For the Arabic numerals, different fonts were used as standard (Helvetica, 34 pt) and control

(DS-Digital, 34 pt) displays. A session comprised 50% nonsymbolic and 50% symbolic stimuli. Within each format, standard and

control protocols were shown with equal probability of 50%.

We applied two different mathematical rules, i.e., addition and subtraction (Figure 1C). Two distinct cues, i.e., the mathematical

sign (‘+’ or ‘–‘) or a verbal analogue (‘und’ [add] and ‘weniger’ [subtract]), were used for each rule (all Helvetica, 34 pt, presented

in the center), in order to dissociate neuronal activity related purely to visual properties of the operator from the rule that it

represented.

Overall, the task comprised seven factors. Five of these factors were varied systematically: Format (symbolic vs. nonsymbolic),

protocol (standard vs. control) and numerical value of operand 1 (1–5), as well as mathematical rule (addition vs. subtraction) and

rule cue (sign vs. word). Operand 2 was always of the same format and protocol as operand 1, but with random numerical values

0–5, albeit guaranteeing calculation results between 0 and 9. Due to this constraint, it was impossible to balance the other two fac-

tors ‘numerical value of operand 2’ (e.g., ‘5’ is less likely to appear than ‘1’, given that ‘X–5’ is only valid for X = {5}, but ‘X-1’ is valid for

X = {1,2,3,4,5}), and ‘numerical value of calculation result’ (e.g., ‘4’ ismore likely to appear than ‘9’, given the possible combinations of

operands to obtain this result).

Each session consisted of a total of 320 trials and was divided into four blocks of 80 trials each, comprising the different conditions

in pseudo-random order. To familiarize subjects with the task, sessions started with 10 rehearsal trials that were excluded from

further analysis.

Neurophysiological Recording
To localize the epileptic focus for possible clinical resection, each subject was implanted bilaterally with chronic intracerebral

depth electrodes in the medial temporal lobe (MTL). The exact electrode locations and numbers were defined exclusively by clin-

ical criteria and varied across subjects. We used 9–10 clinical Behnke-Fried depth electrodes (AD-Tech Medical Instrument Corp.,

Racine, WI) to record neuronal signals. Each depth electrode contained a bundle of nine platinum-iridium micro-electrodes pro-

truding from its tip by approximately 4 mm. Each bundle consisted of eight high-impedance active recording channels and one

low-impedance reference electrode. A 256-channel ATLAS neurophysiology system (Neuralynx Inc., Bozeman, MT) was used

to filter (bandwidth 0.1–9,000 Hz), amplify and digitize (sampling rate 32768 Hz) the differential neuronal signals (recording

range ±3200 mV). The Cheetah software (Neuralynx Inc., Bozeman, MT) was used to synchronize the behavioral data with the re-

corded spikes via 8-bit timestamps.

Neuronal signals were band-pass filtered (bandwidth 300–3,000 Hz), then spikes were detected and pre-sorted automatically

using the Combinato software.54 Manual verification and classification as artifact, multi- or single unit was based on spike shape

and its variance, inter-spike interval distribution per cluster and the presence of a plausible refractory period. Only units that

responded with an average discharge rate of >1 Hz during stimulus presentation (fixation onset to delay 2 offset) were included in

the analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neuronal Analysis of Variance (ANOVA)
Only single units (n = 585) were included in the following analyses. All analyses were performed separately for each MTL area to

identify regional differences (PHC: 126 units; EC: 107 units; HIPP: 199 units; AMY: 153 units). As all participants performed the

task with high proficiency (98.5% ± 0.6%, range 90.3%–99.8%), we did not exclude the negligible number of error trials from the

analyses.

For each unit, activity was analyzed separately for the different task phases involving rule processing. For each stimulus phase

(calculation rule and operand 2 phase), discharge rates were measured in a 400 ms window starting 200 ms after stimulus onset.

For each delay phase (rule delay and delay 2 phase), activity was assessed in a 700 ms window starting 200 ms after delay onset

(latency chosen based on Mormann et al.55 In total, six factors were analyzed: ‘mathematical rule’ (addition/ subtraction) and ‘rule

cue’ (word/ sign), as well as ‘format’ (nonsymbolic/ symbolic), ‘numerical value of operand 1’ (numbers 1–5), ‘numerical value of

operand 20 (numbers 0–5), and ‘numerical value of calculation result’ (numbers 0–9). We pooled over the factor ‘protocol’ given its

incomparability for the different formats4 and its irrelevance for the processing of the rule cues. For each task phase, we performed

an ANOVA considering only those factors relevant for that phase. That is, for the calculation rule and rule delay phase, a 4-way

ANOVA with the factors ‘mathematical rule’, ‘rule cue’, ‘format’ and ‘numerical value of operand 1’ was performed. For the operand

2 and delay 2 phase, we calculated a 6-way ANOVA with the factors ‘mathematical rule’, ‘rule cue’, ‘format’, ‘numerical value of

operand 1’, ‘numerical value of operand 2’ and ‘numerical value of calculation result’. All ANOVAs were evaluated at a = 0.01. A

unit was counted as exclusively rule-selective (‘‘Only Rule’’) if a significant main effect was observed for the factor ‘mathematical

rule’, and there was no significant main effect for any other factor. Exclusive cue-selectivity (‘‘Only Cue’’) was defined analogously.
e2 Current Biology 32, 1275–1284.e1–e4, March 28, 2022
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To evaluate the significance of unit proportions, we subjected the number of significant neurons to a binomial test with an a priori

probability of p = 0.01 corresponding to the alpha level for neurons to be regarded as significant, Bonferroni-corrected for multiple

comparisons across different areas (n = 4).

Support Vector Machine (SVM) Classification
All single units were included in the following population analyses, irrespective of any selectivities found in the ANOVA. For each unit,

data were divided into two classes, assigning the label ‘addition’ to trials with the cues ‘und’ [add] and ‘+’, and the label ‘subtraction’

to the trials with the cues ‘weniger’ [subtract] and ‘–‘. With 80 trials per cue, each class comprised 160 trials. For temporal cross-

training classification, spike trains of each unit were smoothed (Gaussian kernel, s = 150 ms, window size 300 ms) trial-wise within

the trial window of 0–4500 ms (i.e., from fixation onset to 100 ms after delay 2 offset). An SVM classifier with a default linear SVM

kernel56 was then trained on the instantaneous firing rates at a certain time point, and tested on firing rates at different time points

(sampling interval 50 ms).

We applied 10-fold cross-validation, i.e., we created 10 equal-size complementary splits of our dataset, balancing conditions

within each split. Then, 9 splits were used as training set (comprising 288 trials), the remaining split was used as test set (comprising

32 trials). All firing rates were normalized by z-scoring (mean and standard deviation obtained from training data only), then we fitted

the classifier to the training data and assessed the predictive accuracy by counting the instances that a certain activity pattern of the

test data was labeled correctly. This processwas repeated 10 times, using each of the 10 splits exactly once as the validation set. The

results were then averaged across all splits.

To identify temporal clusters during which accuracy differed significantly from chance level (50% for two classes), the analysis was

repeated with randomly shuffled trial labels (nperm = 1000), and a cluster permutation test57 was performed. In short, we identified

temporal clusters of statistical significance by comparing the true accuracy values against the distribution of random ones (aclus =

0.05). The significance of these ‘candidate clusters’ was then evaluated by comparison with the clusters of the random data

(prank < 5%), using cluster size as a test statistic (i.e., number of connected significant ‘pixels’ in the cross-temporal accuracy matrix,

or cluster length for the ‘diagonal curve’ when training and test time points were identical).

High accuracy values do not imply per se that the classifier has learned to encode abstract rule information; comparable

accuracies might also be achieved if the SVM had learned to encode only one specific cue perfectly, but remained at chance level

for the other three cues. To account for this, an SVM (with the same settings as above) was trained and tested on the firing rates

obtained by averaging across the significant interval when training and testing at the same time point. In this fixed-window

analysis we used the following time windows: PHC: 1950–3000 ms and 3150–4000 ms; EC: 2200–3200 ms; HIPP: 2250–4400 ms;

AMY: 2700–3600 ms. We generated a confusion matrix which counted the frequency at which a trial of a certain rule cue was

assigned different labels by the classifier, and calculated the accuracy per mathematical rule by averaging classification probabilities

across the corresponding cues. In PHC, we trained a classifier and assembled confusion matrix and classification probabilities

separately for each of the two significant time windows. Then, we averaged across both models to obtain one overall confusion ma-

trix and overall average accuracies per rule. To evaluate significance, we repeated the analysis with shuffled labels (nperm = 1000) and

applied a permutation test (a = 0.05).

As control, we equalized population sizes by drawing a random subset of units per area (n = 107) and re-calculated all analyses.

This process was repeated 10 times, and the overall statistic was taken to be the mean of the stratified populations.

Finally, we assessed the units’ ability to distinguish the two cue types (as opposed to the arithmetic rule information) by assigning

the label ‘word’ to the ‘und’ [add] and ‘weniger’ [subtract] trials, and the label ‘sign’ to the ‘+’ and ‘–‘ trials. We then repeated the

temporal cross-training classification analysis and trained an SVM classifier on the window significant in the permutation test to

generate the confusion matrix and average accuracy per cue type. The same procedures and settings as above (except for the

labeling) were used for this control analysis.

Generalization of SVM Classification across Rule Cue Notations
To assess how well the results of the SVM classification might generalize to a different cue type, spike trains of all units were again

trial-wise smoothed within the trial window (parameters as above), and labeled as before. Data were then divided into a training and a

test set according to the rule cue.

First, all word trials (i.e., ‘und’ [add] trials labelled ‘addition’ and ‘weniger’ [subtract] trials labelled ‘subtraction’) served as training

dataset. We applied 10-fold cross-validation, i.e., we split the training data into 10 balanced subsamples and used 9 splits as training

dataset (comprising 144 trials). All sign trials (i.e., ‘+’ trials labelled ‘addition’ and ‘–‘ trials labelled ‘subtraction’) served as test dataset

(comprising 160 trials). Temporal cross-training classification was then performed using the same parameters and procedures as

before. This process was repeated 10 times, leaving out each of the 10 subsamples exactly once. The results were then averaged

across all splits. Again, significant temporal intervals were identified using a cluster permutation test (nperm = 1000; aclus = 0.05;

prank < 0.05). Generalization was analyzed also in the opposite direction, i.e., using sign trials as training dataset and word trials

as test dataset, following the same procedures and settings as above.

Next, we identified synchronous intervals, i.e., time windows for which significant classification was observed for both directions

of generalization. Intervals in which significance breaks of at most 150 ms for either one of the test directions occurred were
Current Biology 32, 1275–1284.e1–e4, March 28, 2022 e3
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considered synchronous. Based on this criterion, we identified the following time windows: PHC: 2450–2650 ms and 3250–

3950 ms; HIPP: 2950–4250 ms. For each direction, an SVM classifier (with the same settings as above) was trained on the firing

rates obtained by averaging the training data across these synchronous intervals. Then, we tested the models on the firing rates

obtained by averaging the test data across the same time window, and generated the confusion matrix. As before, in PHC, a clas-

sifier was trained for each of the two time windows. We then averaged the confusion matrices obtained for each interval to get one

overall confusion matrix.

Generalization was then judged successful if (a) we found synchronous intervals of significant classification in the temporal cross-

training analysis, and (b) performance in the fixed-window analysis was significant in a permutation test (nperm = 1000; a = 0.05) for

each arithmetic rule after averaging classification accuracies across both directions of generalization.
e4 Current Biology 32, 1275–1284.e1–e4, March 28, 2022
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Figure S1: Neuronal Selectivity of MTL Single Units per Hemisphere. Related to Figure  3. 

Proportions of single units significant to different task factors for different MTL regions and hemispheres: 

(A) total population, (B) parahippocampal cortex, (C) entorhinal cortex, (D) hippocampus, and (E) 

amygdala. Proportions of units from the right and left hemisphere are depicted in the upper and lower 

rows, respectively. ANOVAs for the different task phases were evaluated at α = 0.01. Neurons with an 

effect for ‘arithmetic rule’, but no concurrent other main effects are termed ‘exclusively rule-selective’ 

(“Only Rule”); same for factor ‘rule cue’. Numbers of significant neurons were subjected to a binomial 

test, Bonferroni-corrected for multiple comparisons across areas (n1 = 4) and hemispheres (n2 = 2); 

asterisks indicate significance (*p < 0.05, **p < 0.01, ***p < 0.001).  



 

Figure S2: Neuronal Selectivity of MTL Single Units across Periods. Related to Figure 3. 

Proportions of single units significant in any (i.e., one or more) of the task periods (solid bars) along with 

percentages added up across the four trial periods (light bars). ANOVAs for the different task phases 

were evaluated at α = 0.01. Neurons with an effect for ‘arithmetic rule’, but no concurrent other main 

effects are termed ‘exclusively rule-selective’ (“Only Rule”). Numbers of significant neurons were 

subjected to a binomial test, Bonferroni-corrected for multiple comparisons across areas (n1 = 4) and 

task phases (n2 = 4); asterisks indicate significance (*p < 0.05, **p < 0.01, ***p < 0.001). 



Figure S3: Rule Decoding in Different Hemispheres using an SVM Classifier. Related to Figure  4. 

Classification accuracy for decoding arithmetic rule information in (A) parahippocampal cortex: 67 units 

recorded from the right hemisphere, 59 units from the left hemisphere, and (B) hippocampus: 104 units 

recorded from the right hemisphere, 95 units from the left hemisphere. SVM classifiers were trained on 

the instantaneous firing rates across the trial period. The dashed line represents chance level (50 % for 

two classes). Light and dark blue bars above the data indicate significance (p < 0.05) in a permutation 

test for each hemisphere. Abbreviations at the axes indicate task phases: F, fixation; O1, operand 1; 

D1, delay 1; CR, calculation rule; RD, rule delay; O2, operand 2; D2, delay 2.  



 

Figure S4: Rule Decoding in Sample-Equalized MTL Populations using an SVM Classifier. 

Related to Figure 4. Decoding performance when using random subsets of neurons per area, 

equalizing population size across all MTL regions (columns). (A–D) Average classification accuracy for 

decoding arithmetic rule information when training an SVM on the instantaneous firing rates across the 

trial period. The dashed line represents chance level (50 % for two classes). Black bars above the data 

and gray shaded areas indicate significance (p < 0.05) when testing against performance for SVMs 

trained on shuffled data in a permutation test. Abbreviations at the axes indicate task phases: F, fixation; 

O1, operand 1; D1, delay 1; CR, calculation rule; RD, rule delay; O2, operand 2; D2, delay 2. (E–H) 

Confusion matrix derived when training an SVM on firing rates averaged across the significant time 

window in (A–D), respectively. E shows the average of the confusion matrices obtained for each 

significant window (depicted in A). (I–L) Accuracy when training an SVM at a given time point of the trial 

and testing on another one (the main diagonals of the matrices correspond to the curves in A–D). Black 

contours indicate significance (p < 0.05) in a permutation test.   



 

Figure S5: Rule Notation Decoding using an SVM Classifier. Related to Figure 4. Classifier 

performance for the four different MTL regions (columns). (A–D) Classification accuracy for decoding 

cue information when training an SVM classifier on the instantaneous firing rates across the trial period. 

The dashed line represents chance level (50 % for two classes). Black bars above the data indicate 

significance (p < 0.05) when testing against performance for SVM classifiers trained on shuffled data in 

a permutation test. Abbreviations at the axes indicate task phases: F, fixation; O1, operand 1; D1, 

delay 1; CR, calculation rule; RD, rule delay; O2, operand 2; D2, delay 2. (E,F) Confusion matrix derived 

when training an SVM on firing rates averaged across the significant time window in A and C, 

respectively. Significance was reached only in the PHC. (G–J) Accuracy when training an SVM classifier 

at a given time point of the trial and testing on another one (the main diagonals of the matrices 

correspond to the curves in A–D). Black contours indicate significance (p < 0.05) in a permutation test. 
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