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Distinct neuronal representation of small 
and large numbers in the human medial 
temporal lobe

Esther F. Kutter1,2, Gert Dehnen1, Valeri Borger    3, Rainer Surges    1, 
Florian Mormann    1,4  & Andreas Nieder    2,4 

Whether small numerical quantities are represented by a special subitizing 
system that is distinct from a large-number estimation system has been 
debated for over a century. Here we show that two separate neural 
mechanisms underlie the representation of small and large numbers. 
We performed single neuron recordings in the medial temporal lobe of 
neurosurgical patients judging numbers. We found a boundary in neuronal 
coding around number 4 that correlates with the behavioural transition 
from subitizing to estimation. In the subitizing range, neurons showed 
superior tuning selectivity accompanied by suppression effects suggestive of 
surround inhibition as a selectivity-increasing mechanism. In contrast, tuning 
selectivity decreased with increasing numbers beyond 4, characterizing a 
ratio-dependent number estimation system. The two systems with the coding 
boundary separating them were also indicated using decoding and clustering 
analyses. The identified small-number subitizing system could be linked to 
attention and working memory that show comparable capacity limitations.

When asked to judge the number of briefly presented items in a set, 
humans show a behavioural dichotomy1. Participants respond fast 
and accurately for small numbers up to about 4 in a process termed 
‘subitizing’2. However, for larger numbers beyond 4, participants show 
increasingly slower and more imprecise number ‘estimation’ that is 
dependent on the ratio between the numbers to be compared2–5.

On the basis of behavioural measures, it has been argued that 
the observed judgement differences arise from one and the same 
estimation system whose negligible ratio-dependent imprecision 
for small numbers gives rise to a seeming dichotomy in underlying 
mechanisms6,7. Others, in contrast, maintain that subitizing and estima-
tion reflect two distinct mechanisms for assessing small versus large 
numbers2–5. Explorations into underlying brain mechanisms using 
blood flow imaging or electroencephalography remained similarly 
inconclusive; while some studies argue for a single underlying mecha-
nism8–12, others propose two separable number systems13–15.

In this Article, to address this century-old debate about a single 
or two distinct mechanisms for number representations, we recorded 
single-neuron activity in the medial temporal lobe (MTL) of neurosurgi-
cal patients who judged numerical quantity16,17. If small and large num-
bers are represented by the same neuronal mechanism, a continuous 
code across small and large numbers is anticipated. However, if small 
and large numerosities engage distinct mechanisms, two different 
coding schemes with a discontinuity reflecting the change from one 
mechanism to the other is expected.

Results
We asked 17 human participants to quickly judge the parity (even versus 
odd) of numbers ranging from 0 to 9 shown as dot arrays on a computer 
screen. The simple parity task is suited to test a broad range of explicit 
number representations devoid of other cognitive factors (such as working 
memory), and in short time for the participants. In each trial, a numerosity 
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the tuning curves of number-selective neurons. We calculated the 
numerosity tuning functions of all numerosity-selective neurons  
using standardized activity (z-score relative to baseline activity)  
(Fig. 3c). Apart from the well-known number-tuning characteristics, 
that is, maximum activity to the preferred number and progressively 
reduced firing rates as distance from the preferred number increased, 
several distinguishing features in the tuning to small versus large 
numbers emerged.

was flashed for 500 ms after a short fixation period, followed by a brief 
delay during which the number stimulus was removed (Fig. 1a). Afterwards, 
participants decided whether the number of dots had been even or odd 
by pressing the left or right arrow key, respectively, on the keyboard as 
indicated on the response screen. The keys associated with the respective 
response were switched between blocks to control for potential motor 
bias. Different stimulus protocols were used to control for non-numerical 
visual parameters: dots were shown in a standard (variable dot size and 
arrangement) and two control displays (constant total dot area and dot 
density across numerosities, and linear arrangement) (Fig. 1b). The numer-
osity and protocol of the stimuli varied randomly from trial to trial.

Behaviour
The participants’ performance showed well-known behavioural effects 
indicative of two different representational systems. Small countable 
numerosities from 1 to 4 were equally effortlessly judged with only few 
errors (Fig. 1c) and short reaction times (RTs) (Fig. 1d), as expected for 
subitizing2–4. In contrast, numbers 5 and higher were judged with notice-
ably increasing error rates and RTs indicative of number estimation. This 
observation was bolstered by calculating the discontinuity point that 
signals a change in the slope18, which could be determined for 14 of the 
17 participants. We found average discontinuity points of 3.7 and 3.6 for 
error rates and RTs, respectively, as the upper boundary of the subitizing 
range (Fig. 1c,d). The errors seen for numbers larger than 5 argue that 
participants were not symbolically counting items as serial counting 
would be error-free and moreover has been shown to be impossible 
in afterimages19,20. Asymmetric switch cost effects for the transition 
from subitizing to estimation versus the transition from estimation to 
subitizing were not observed21,22 (Pswitch condition = 0.88; two-factor analysis 
of variance (ANOVA) with factors ‘numerical value’ (0–9) × ‘switch condi-
tion’ (switch versus non-switch)). Consistent with previous reports23,24, 
the empty set (number zero) elicited distinct behavioural effects due to 
its special status as a latecomer in number concepts25.

Neuronal responses
To test the long-standing hypothesis of different enumeration systems 
for small versus large numbers, we recorded action potentials of 801 
single neurons in the MTL of the 17 participants while they performed 
the number task. Many neurons were activated in a tuned fashion to 
the numerical value of the sample stimulus. They responded strong-
est to their respective preferred numerosities and decreased their 
activity progressively with increasing numerical distance (Fig. 2a–d). 
We statistically identified number-selective neurons by applying a 
sliding-window analysis to all cells16. We combined a two-factor ANOVA 
with factors ‘numerical value’ (0–9) × ‘protocol’ (standard versus con-
trol) to detect tuning to numerical values, and a separate Mann–Whit-
ney U test with factor ‘parity’ (even versus odd) to exclude neurons 
responsive to parity judgements (both evaluated at α = 0.01). Across 
all four areas individually, a substantial proportion of neurons showed 
a significant main effect for the factor ‘number’ (P < 0.001; binomial 
test with Pchance = 0.01), but no effect for the factors ‘protocol’ or ‘par-
ity’ (Fig. 3a). Across all four areas combined, 15.1% of MTL neurons 
(121/801) showed an exclusive significant main effect for the factor 
‘number’ (Fig. 3a). Each of the tested numerosities (0–9) constituted 
the preferred numerosity of individual selective neurons (Fig. 3b); dif-
ferences in these proportions were not due to response preferences for 
specific numerosities, but consistent with random variation (P = 0.15; 
Mantel–Haenszel test). Similarly, response latencies across the four 
MTL regions (parahippocampal cortex (PHC), entorhinal cortex (EC), 
hippocampus (HIPP) and amygdala (AMY)) did not reveal significant 
differences (P = 0.87; Kruskal–Wallis test).

Neuronal tuning characteristics
To explore hypothesized different physiological mechanisms for 
the representation of small and large numerosities, we first analysed 
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Fig. 1 | Behavioural task, stimuli and behavioural performance. a, Parity 
judgement task. Participants were required to indicate whether the number 
of dots was even (‘gerade’) or odd (‘ungerade’) by pressing the left or right 
arrow key, respectively (or vice versa). b, Sample number protocols. Dot arrays 
represented numerosity. They were shown in a standard layout with variable 
dot size and position (left), in a control layout with equalized total area and 
density of the dots (middle), and additionally as linearly arranged dots (right). 
Numerical values covered the range 0–9; exemplary dot displays for numbers 4 
and 8 for each protocol are shown. c, Behavioural performance. Mean error rates 
and error bars denoting standard error of the mean (s.e.m.) are shown (n = 17). 
Values above small horizontal bars indicate P values for pair-wise comparisons 
(two-sided, paired t-test, Bonferroni-corrected for multiple comparisons of 
numbers (n = 9)); all other pair-wise comparisons were not different (P > 0.05). 
The subitizing boundary (green dashed line) is defined as the intersection point 
of the tangent (black dashed line) at the inflection point (black star) of a sigmoid 
fit (blue dotted line) to the error rates (excluding zero), and the subitizing line 
(red dashed line) at which the sigmoid curve intersects the y axis. d, RTs. Median 
and error bars denoting s.e.m. are shown (n = 17). Values above small horizontal 
bars indicate P values for pair-wise comparisons (two-sided, Wilcoxon signed 
rank test, Bonferroni-corrected for multiple comparisons of numbers (n = 9)); all 
other pair-wise comparisons were not different (P > 0.05). Conventions for the 
subitizing boundary as in c.
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First, tuning functions to small preferred numerosities 0–3 
showed systematic surround suppression below spontaneous activity 
to non-preferred numbers, whereas tuning functions to large numerosi-
ties 4–9 returned to spontaneous activity for non-preferred numbers 
(Fig. 3c; see also example neuron tuning functions in Fig. 2a–d). We 
compared the firing rates elicited by non-preferred numbers (that 
is, at the flanks of the tuning curves) to the neurons’ baseline activity. 
We found that firing rates at the flanks were significantly smaller than 
baseline activity in neurons tuned to each of the preferred numbers 0 to 
3 (P values numerosity 0: 1.4 × 10−15; numerosity 1: 0.0024; numerosity 
2: 8.7 × 10−14; numerosity 3: 0.0086; one-sided Wilcoxon signed rank 
tests), but not different from baseline in neurons tuned to each of the 
preferred numbers 4 to 9 (all P values >0.98; one-sided Wilcoxon signed 
rank tests) (Fig. 3d). The sharp cut in surround suppression between 
3 and 4 was not due to tuning functions for preferred numbers larger 
than 3 becoming too wide to detect suppression. This argues for a 
physiological effect rather than a tuning-function resolution issue.

Second, and correlating with this tuning-flank suppression, we 
observed systematic differences in the amplitudes of the tuning curves. 
We fitted Gauss functions to the tuning curves and derived the ampli-
tude value as a quantitative measure for the amplitude of the tuning 
functions25. Tuning curve amplitudes of neurons tuned to small num-
bers (0–3) were significantly smaller compared to large number (4–9) 
tuning curves (P < 0.001; one-sided Mann–Whitney U test), whereas 
tuning amplitudes were indifferent within the groups of neurons tuned 
to small (P = 0.38; Kruskal–Wallis test) and large numbers (P = 0.69; 
Kruskal–Wallis test) (Fig. 3e).

Third, tuning selectivity showed a dichotomy between small and 
large numbers. Since small numbers in the subitizing range can be 
discriminated more accurately (Fig. 1c), and more accurate discrimina-
tion is linked to more selective (that is, narrower) tuning functions26–28, 
systematic differences in number tuning selectivity between the subi-
tizing versus estimation range are expected. Thus, we derived the 
sigma value from the Gauss fits to quantify tuning width29. The tuning 

widths for neurons tuned to numbers 0–3 were small and not different 
in value (P = 0.9; Kruskal–Wallis test). Note that sigma as a measure of 
tuning width can be much smaller than 1, which is why the stable tun-
ing widths in the subitizing range are not due to a floor effect. Around 
preferred number 4 or 5, a turning point emerged with tuning widths 
systematically increasing in a linear fashion towards larger numbers, 
as expected for ratio-dependent estimation (Fig. 3f). The selectivity 
dichotomy of neurons across the range of numbers is in agreement 
with behavioural predictions and suggests separate mechanisms for 
the coding of small versus large numerosities.

To explore the categorically distinct representation of small versus 
large numerosities further, we performed a representational similarity 
analysis (RSA) by calculating the correlation coefficients of the z-scored 
firing rates between all pairs of numbers for number-selective neurons 
(n = 121). We hypothesized that neurons tuned to small numbers would 
show more similar firing rates to other small numbers and thus higher 
correlation coefficients within pairs of small numbers, whereas neurons 
tuned to large numbers would show higher correlation coefficients 
within pairs of other large numbers. The resulting matrix of correlation 
coefficient values suggests radically different coding for numerosity 0 
(which was therefore excluded from this analysis), but also categorical 
differences between small and large countable numbers (Fig. 3g). We 
then quantified for which of the eight number boundaries (that is, 1|2, 
2|3, …, 8|9) the difference between within- and across-category cor-
relation values was most significant and thus best segregated these 
data into small versus large number representations. The highest and 
most significant correlation value difference between within- and 
across-categories (r = 0.27; P = 1.12 × 10−5) was found for the boundary 
3 versus 4 (Mann–Whitney U test, Bonferroni-corrected for multiple 
comparisons of boundaries, n = 8) (Fig. 3h). This correlation analysis 
suggests categorically different encoding of small versus large numbers 
based on the selective neurons’ firing rates. When applied to the entire 
set of single units regardless of numerosity selectivity (801 units), this 
analysis yielded qualitatively similar results (Supplementary Fig. 1).
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Fig. 2 | Responses of number-selective neurons. a, Example neuron from EC 
tuned to small number 2. Top: dot-raster histogram. Each row indicates one trial 
(colours correspond to presented numbers); each dot represents one action 
potential. Middle: corresponding mean instantaneous firing rates across trial 
time obtained by averaging responses to each number (smoothed using a 150 ms 
Gaussian kernel). Colours correspond to sample number. The horizontal dotted 
line depicts spontaneous activity (average across fixation periods). The grey 
shaded area represents the significant number-selective interval according to the 
sliding-window ANOVA (colour-coded P values above each panel). Bottom (left): 

density plot of the recorded action potentials, colour darkness indicating the 
number of overlapping wave forms according to the colour scale at the bottom. 
Bottom (right): number tuning function (average firing rate in the selective trial 
interval plotted against sample number). The horizontal dotted line indicates 
spontaneous firing rate. b, Example neuron from EC tuned to small number 3. 
Same layout as in b. c, Example neuron from PHC tuned to large number 5. Same 
layout as in b. d, Example neuron from HIPP tuned to large number 7. Same layout 
as in b.
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Population decoding using SVM classifiers
In addition to single neurons, neural populations carry information 
about neuronal computations30. Next, we therefore explored potential 
decoding discontinuities for numbers at the level of the population of 
selective neurons (n = 121) (Fig. 4a). Using a support vector machine 
(SVM) classifier, we first identified the time window of significant 
above-chance classification during a sliding-window classification 
analysis (60 ms to 1,200 ms after sample number onset; α = 0.01) 
(Fig. 4b). Next, another classifier was trained with 50% of the data to 
discriminate the ten numbers, and then tested on the remaining 50% 
novel data from the same neuronal population and in the same time 
window to evaluate how well the model could decode each number 
based on information extracted from trials used during training. The 
classification probability of predicted numbers per truly presented 
number was then used to assemble a confusion matrix, with the main 
diagonal indicating correct labelling (Fig. 4c).

The classifier predominantly confused numbers from within 
the small-number category (upper-left square) and from within the 
large-number category (lower-right square), but not numbers across 
the small and large number category (in the lower-left and upper-right 
squares) (Fig. 4c). Zero was again excluded from the categorization 
analysis due to its distinctive difference relative to countable numbers. 
We quantified which of the eight number boundaries (that is, 1|2, 2|3, …, 

8|9) resulted in the largest statistically significant differences in classi-
fication probabilities. A boundary between numbers 4 and 5 resulted in 
the largest and most significant difference in classification probability 
(difference 15%) between within- and across-categories (P = 2.22 × 10−6; 
Mann–Whitney U test, Bonferroni-corrected for multiple comparisons 
of boundaries, n = 8) (Fig. 4d). This population decoding analysis again 
indicates categorically different encoding of small versus large num-
bers, with a boundary between numbers 4 and 5. Again, this analysis 
yielded similar results when performed for the entire population of 
single units (n = 801; Supplementary Fig. 2).

Multi-dimensional state-space analysis and cluster analysis
Finally, to explore the dynamics of neuronal coding differences 
potentially pointing to two different number systems, we per-
formed a multi-dimensional state-space analysis for the population 
of numerosity-selective neurons. At each point in trial time, the activity 
of n recorded neurons is defined by a point in n-dimensional space, 
with each dimension representing the activity of a single neuron 
(n = 121). The multi-dimensional space (used for quantitative analy-
ses) is reduced to the three most informative dimensions for graphical 
depiction in three-dimensional (3D) state space. This results in 3D 
trajectories that are traversed for different neuronal states, that is, for 
the ten different numerical values (Fig. 5a). These trajectories reflect 
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Fig. 3 | Tuning characteristics of number-selective neurons. a, Proportions 
of neurons with a significant main effect for ‘number’ (NUM), ‘exclusively 
number’ (NUM-ONLY), ‘number protocol’ (PROT) in a two-way ANOVA, or ‘parity’ 
(PAR) in a Mann–Whitney U test, evaluated at α = 0.01, separately for each MTL 
region (number of recorded units in brackets). b, Proportion of neurons tuned 
to different preferred numbers. c, Average z-scored tuning curves of number-
selective neurons tuned to the ten numbers (colour-coded as depicted in b). 
Error bars denote standard error of the mean (s.e.m.). d, Average (z-scored) firing 
rate per preferred number (rows) colour-coded relative to baseline activity. 
Blueish colours indicate suppression; reddish colours indicate enhancement of 
firing rates relative to baseline activity. e, Average tuning amplitude per preferred 
number derived from Gauss fits to tuning curves. Standard errors denote s.e.m. 
Amplitudes did not differ for units preferring small numerosities 0–3 (n = 55) and 
for units preferring large numerosities 4–9 (n = 73) (Kruskal–Wallis tests; P > 0.05, 
n.s.) but were significantly different between both groups, as indicated by the P 
value above the small horizontal bar (one-sided Mann–Whitney U test). f, Average 
tuning selectivity per preferred number as measured by sigma from Gauss fits 
to tuning curves. Error bars denote s.e.m. Sigma was small and constant for 

small numbers but increased in proportion with the value of large numbers. 
Sigmas did not differ for units preferring small numerosities 0–3 (n = 55), but 
were significantly different between both groups, as indicated by the P value 
above the small horizontal bar (one-sided Mann–Whitney U test). g, Correlation 
coefficients of the z-scored firing rates between pairs of numbers for all number-
selective neurons (n = 121). Firing rates were more similar (higher correlations, 
corresponding to reddish colours) for numbers from the same number (small or 
large) category (upper-left and lower-right square), compared with responses 
for numbers from a different category (lower-left and upper-right square). 
White lines depict significant number category boundaries (solid line is most 
significant), dividing correlations into small versus large number categories. 
h, Evaluation of the goodness-of-fit of different number boundaries. Orange 
values depict the differences of correlation coefficients when segregating small 
versus large number categories (excluding zero) at different boundaries. The 
corresponding P values (two-sided Mann–Whitney U test) for these coefficient 
differences are shown in blue. Boundary 3 versus 4 (asterisks) divides the data 
most significantly into two number categories. The blue dotted line indicates 
α = 0.01, Bonferroni-corrected for multiple comparisons (n = 8).
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the instantaneous firing rates of the population of selective neurons as 
they evolve over time. Spatial closeness (that is, small distances) of the 
trajectories represents similarity in coding for the respective numer-
osities, whereas spatial disparity (that is, large distances) reflects 
coding dissimilarity.

The spatial layout of the trajectories evolving after sample onset 
until the end of the delay period again suggests two categorically 
different state spaces for numerosities 0–4 versus numerosities 5–9 
(Fig. 5a). The trajectories representing numerosities 0–4 run in close 
vicinity to each other but (as expected) with increasing spatial gaps 
according to ordinal numerical distance. The same spatial pattern 
emerges within the group of trajectories representing numerosities 
5–9. However, both trajectory categories are spatially segregated from 
each other by a large gap.

To statistically quantify this graphical grouping effect, we per-
formed a cluster analysis on the neuronal population state space 
with averaged firing rates across the previously defined time window 
(60–1,200 ms after sample onset). The neural state space was then 
orthonormalized using principal component analysis. For visualiza-
tion, only the first two dimensions (that is, PC1 and PC2) are shown 
(Fig. 5b). We first determined the optimal number of clusters for 
the data set by applying two measures: the Caliński–Harabasz index 
(also termed ‘variance ratio criterion, VRC’)31, and the ‘gap criterion’ 

that determines the most dramatic decrease in error measurement 
(the ‘elbow’ or ‘gap’) of different cluster numbers32. Both measures 
indicated two clusters as the optimal cluster number for the dataset  
(Fig. 5c). We then applied unsupervised k-means clustering to partition 
all trials (n = 160) into two clusters33. The clustering algorithm detected 
one cluster that comprised the state spaces for numbers 0–4, and a 
second cluster consisting of state spaces for numbers 5–9 (Fig. 5d). 
Thus, the number state space is optimally described by two clusters that 
border between number representations 4 and 5. Again, performing 
this analysis for the entire population of single units (n = 801) yielded 
similar results (Supplementary Fig. 3).

Discussion
Our results provide evidence for two mechanisms encoding the con-
tinuous range of number. The number space from 0 to 9 was unin-
termittedly covered by single neurons’ overlapping tuning functions 
inherently ordered by number, and the activity of neuron populations 
was systematically arranged by numerical distances16,34–36. However, a 
coding dichotomy mirroring behavioural findings emerged within this 
representational continuum: neuronal tuning to small numbers in the 
subitizing range was more selective and ratio independent, whereas 
tuning widths increased in a ratio-dependent manner after a turning 
point around number 4. We also observed strong evidence for this 
coding dichotomy at the neuronal population level. This argues for a 
separate enumeration system for subitizing in addition to an estimation 
system2–5. Whether the current findings in the MTL transfer to other 
brain regions is currently not known and requires further exploration.

A defining feature of neuronal tuning in the subitizing range was 
surround suppression below baseline activity. Surround inhibition 
is a basic neuronal circuit operation37,38 known to increase contrast 
sensitivity. Here, excitatory neurons firing in response to preferred 
stimuli recruit broadly tuned inhibitory interneurons that in turn 
suppress firing of neurons tuned to different preferred stimuli. Inhibi-
tion via interneurons is supposed to shape and sharpen the tuning to 
numerosities in the animal brain39,40 and could mechanistically explain 
the more accurate number discrimination in the subitizing range. The 
time scale of surround inhibition to enable selective encoding in the 
subitizing range could be very fast. Moreover, the time delay of sur-
round suppression with respect to classical receptive field excitation 
in the primate visual system has been reported to range from 15 to 
60 ms (ref. 41), but (with a delay of 9 ms) can also act almost as sud-
denly as the direct-driving classical receptive field excitation signals42. 
Such short delays in surround inhibition are thought to emerge from a 
combination of feedforward, lateral and feedback connections to the 
target area39,43. While these mechanisms of surround suppression are 
a realistic assumption to explain the enhanced neuronal tuning in the 
subitizing range, they need direct testing in future experiments. With 
excitatory and inhibitory neurons identified in the human MTL44–46, the 
necessary circuit components would readily be available to implement 
almost instantaneous surround inhibition for selective coding in the 
subitizing range.

Subitizing has been suggested to tap a different system in addition 
to that that for number estimation5. In contrast to number estimation, 
which is unaffected by attentional manipulations, subitizing is heav-
ily dependent on attentive resources47–49. Attention-based processes 
that determine how many elements of information can be kept active 
in working memory have a very limited capacity of up to around four 
items50,51, precisely the same set-size limit found for subitizing52. The 
mechanisms we discovered for subitizing may therefore well play 
a role for other capacity-limited processes, such as attention and 
working memory49. Similar to the observed surround suppression 
in small-number tuning curves, tuning flank suppression is a known 
mechanism to contrast task-relevant and task-irrelevant stimulus fea-
tures in attention- and working-memory-related operations53–55. Here 
as well, a suppressive zone below baseline is seen in the surround of the 
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preferred stimulus parameter56–59. In intermediate-level visual area V4, 
surround suppression caused by spatial attention can be very quick and 
as early as 75 ms post stimulus onset58. The hypothesis is that with high 
attentional demand, the subitizing system overrides the estimation 
system. Thus, the subitizing system would enhance rather than replace 
estimation for small numbers5. This would also explain why estimation 
processes can in principle work also for small numbers, as seen many 
times in both human and animal brain studies7,8,12,60–63. This hypothesis 
is consistent with our current findings but needs to be tested empiri-
cally by contrasting the responses of neurons with and without atten-
tional demands assigned to number representations. Complementing 
our parity judgement task with richer and more explicit number tasks 
could also help to support the generality of findings.

Methods
Experimental model and participant details
All studies conformed to the guidelines of the Medical Institutional 
Review Board at the University of Bonn, Germany, and were approved 
by this Board (licence no. 146/19). Seventeen human participants (five 

male, mean age 37.6 years) with medically refractory focal epilepsy 
undergoing invasive pre-surgical assessment participated in the study. 
Informed written consent was obtained from each patient; participants 
received no financial compensation for participating in the study.

Neurophysiological recording
Participants were implanted bilaterally with chronic intracerebral 
depth electrodes in the MTL to localize the seizure-onset zone for pos-
sible neurosurgical resection. The implantation site of the electrodes 
was determined exclusively by clinical criteria and varied across partici-
pants. To record neuronal signals, we used 9–10 clinical Behnke–Fried 
depth electrodes (AD-Tech Medical Instrument Corp.). Each depth 
electrode contained a bundle of nine platinum–iridium micro-wires 
protruding ~4 mm from the tip of each electrode: eight high-impedance 
active recording channels, and one low-impedance reference wire. 
Using a 256-channel ATLAS neurophysiology system (Neuralynx), 
differential neuronal signals (recording range ±3,200 µV) were filtered 
(bandwidth 0.1–9,000 Hz), amplified and digitized (sampling rate 
32,768 Hz). Recorded spikes and behavioural data were synchronized 
via 64-bit timestamps using the Cheetah software (Neuralynx).

After bandpass-filtering (bandwidth 300–3,000 Hz) the local 
field potentials, spikes were automatically detected and pre-sorted 
using the Combinato package64. Classification as artefact, multi-unit 
or single unit was verified manually on the basis of spike shape and its 
variance, inter-spike-interval distribution per cluster, and the presence 
of a plausible refractory period. Only units that responded with an aver-
age firing rate of >1 Hz during stimulus presentation were included in 
the analyses. Across 28 recording sessions from all 17 participants, a 
total of 801 single units were identified in the PHC (109 units), EC (262 
units), HIPP (275 units) and AMY (155 units).

Stimuli
All stimuli were presented within a filled grey circle (diameter approxi-
mately 6° of visual angle) on a black background. During fixation and 
delay phase, a white fixation spot was presented in the centre of the grey 
area. It was removed during stimulus presentation to avoid confusion 
with non-symbolic stimuli.

Numerical values of the stimuli ranged from 0 to 9 and consisted 
of black sets of dots with the number of dots corresponding to the 
respective numerical value (‘numerosities’). Given that we needed zero 
for a balanced count of even and odd numbers, and acknowledging 
that zero is a set (even if empty) and a whole number like the natural 
numbers, we included zero in the stimulus presentation. We used differ-
ent ‘protocols’ to control for low-level visual features. For the standard 
protocol, diameter and location of each dot varied randomly within a 
given range (diameters of 0.3° to 0.8° of visual angle). In the control 
displays, the total dot area and dot density (mean distances between 
centres of the dots) across numerosities was equated. Additionally, 
in half of the control trials, the dots were linearly arranged. Standard 
and control protocols for the non-symbolic stimuli were shown with 
equal probability of 50%.

Experimental task
Participants performed a parity judgement task sitting in bed and fac-
ing a laptop (display diagonal 11.7 inches, resolution 1,366 × 768 px) on 
which stimuli were presented at a distance of approximately 50 cm. 
Participants were not informed about hypotheses or purposes of the 
experiment to exclude any bias.

Before the experiment, the task instruction was displayed on the 
screen in addition to verbal explanation by the experimenter, specify-
ing which numbers were ‘even’ and which ones ‘odd’. Furthermore, to 
reduce confusion about the ‘zero’ stimulus, we added some familiari-
zation trials preceding the recordings, during which the experimenter 
pointed out, once more, that an empty grey circle represented the 
‘even number zero’.
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Each trial started with a fixation period of 300 ms. Afterwards, a 
number stimulus was presented for 500 ms, followed by a 600 ms delay 
display. After delay offset, participants had to decide whether the num-
ber had been even or odd by pressing the left or right arrow key on the 
keyboard, respectively, as indicated on the response screen (‘gerade’ 
(even) or ‘ungerade’ (odd)). To control for potential motor bias, the keys 
associated with the respective response were balanced and switched 
across blocks. Participants responded in a self-paced manner, but were 
asked to respond as fast and accurately as possible. After a 200 ms feed-
back display, the next trial started automatically. Each number stimulus 
was presented 16 times, resulting in 160 trials. A session was divided 
into four blocks, comprising all conditions in pseudo-random order. 
Stimuli and experimental task were programmed in MATLAB R2017a 
(The MathWorks), using the Psychtoolbox3 (refs. 65–67).

Behavioural analyses
First, we plotted the behavioural measures (error rates and RTs, aver-
aged across participants, n = 17) as a function of numerical value of 
the stimulus. This function is characterized by a shallow, near-zero 
slope for small numbers, and a steeper slope for numbers beyond the 
subitizing range. The discontinuity point, in which the slope of this 
function changes, defines the upper boundary of the subitizing range. 
To quantify this boundary, we applied the algorithm for calculating 
individual subitizing ranges18, that is, we first fitted a sigmoid (logistic) 
function to the behavioural data:

BM = L + (U − L) • 1
1 + exp (−x − IP)

where BM is the behaviour exhibited in response to the presentation of 
numerical value x. The model coefficients lower bound L, upper bound 
U and inflection point IP were estimated in the fitting process. We then 
applied the Levenberg–Marquardt algorithm to solve this non-linear 
least-squares curve-fitting problem. Next, we fitted two linear func-
tions to the sigmoid curve. The subitizing line is equivalent to the lower 
bound L where the sigmoid curve crosses the y axis; the tangent line is 
fitted to the tangent at the inflection point IP. The intersection point 
of these two linear fits is then used as a proxy for the upper boundary 
of the subitizing range.

Neuronal analyses
Overall behavioural performance was high across all participants 
(mean ± standard deviation: 86.4 ± 3.1%). Errors occurred mainly for 
larger numbers. Because of the low error rate and the need to have bal-
anced numbers of trials across numerosities, we included both correct 
and incorrect trials into the analyses.

Tuning characteristics
Spike trains were smoothed trial-wise (Gaussian kernel with σ = 150 ms) 
for each unit within the trial window −300 to 1,200 ms (fixation onset 
to 100 ms after delay offset). At every 20 ms step, instantaneous firing 
rates were subjected to a two-factor ANOVA with factors ‘numerical 
value’ (0–9) and ‘protocol’ (standard versus control) to detect tuning 
to numerical values, and a separate Mann–Whitney U test with factor 
‘parity’ (even versus odd) to exclude neurons responsive to parity 
judgements (note that we could not apply a three-factor ANOVA as 
parity is not independent from the numerical value), resulting in a 
temporal sequence of P values for each of the three factors. A cluster 
permutation test68 was then performed to identify time intervals of 
significant number encoding, thereby controlling for multiple com-
parisons across time (αclus = 0.01; Prank < 1%; nperm = 100). A unit was 
termed ‘exclusively number-selective’ (NUM-ONLY) if a significant 
time interval for the factor ‘numerical value’ was observed between 
0 ms and 1,000 ms (stimulus onset to 100 ms before delay offset), 
and there were no overlapping significant intervals for the factors 

‘protocol’ or ‘parity’. These units are henceforth referred to as ‘num-
ber neurons’. Proportions of these number neurons were determined 
for each MTL region and subjected to a binomial test (Pchance = 0.01), 
Bonferroni-corrected for multiple comparisons across brain regions 
(n = 4), to evaluate whether the observed proportions were higher than 
expected by chance.

For each number neuron, we calculated tuning functions by aver-
aging the firing rates during the significant time interval across trials 
for all numerical values. The numerical value eliciting the maximum 
response was defined as ‘preferred numerosity’. To test for potential 
differences in the proportions of preferred numerosities, we applied 
the Mantel–Haenszel Χ² test69,70, a generalized version of Pearson’s Χ² 
test, for analysis of 2 × 9 × 17 contingency tables, excluding zero as an 
outlier and stratified for different participants (n = 17).

Tuning functions were then standardized by z-scoring, that is, 
we subtracted the mean baseline activity elicited during the fixation 
periods (−300 to 0 ms) from all values and divided the difference by 
the standard deviation. In cases where multiple significant number 
intervals were identified within the same unit, we calculated separate 
tuning curves for each of these intervals (8/121 number neurons). 
Population tuning functions were then obtained by averaging across 
all units that preferred the same number.

To quantify surround suppression, we combined the firing rates to 
all non-preferred numbers for all units preferring the same numerical 
value and tested whether they were significantly smaller than spon-
taneous activity (that is, a z-score of 0) using a one-sided Wilcoxon 
signed rank test.

To estimate the tuning amplitude and width of all numerosity- 
selective neurons, we fitted a Gauss function, representing the standard 
symmetric distribution, to each individual tuning curve:

FR(x) = a exp (− (x − μ)2

2σ2
) + o

where FR is the z-scored firing rate elicited in response to the pres-
entation of numerical value x. The mean µ was fixed to the preferred 
number; the model coefficients amplitude a, offset o, and standard 
deviation σ were estimated in the fitting process, thereby using the 
following bound constraints: a = [0;max(FR)], o = [min(FR);max(FR)] 
and σ = [0;Inf], to avoid implausible fitting results. We then applied the 
Levenberg–Marquardt algorithm to solve this non-linear least-squares 
curve-fitting problem.

RSA
Pearson’s correlation coefficient quantifies the strength of the linear 
relationship between two variables. To evaluate firing rate differences 
between different number conditions, we performed an RSA. We cal-
culated a correlation matrix, showing the correlations between firing 
rates in response to number i and to number j, respectively, for all 
condition pairs, based on the z-scored tuning curves of all number 
neurons. We then determined the boundary that divided the data 
best into the categories of ‘small’ and ‘large’ numbers. For this, we 
defined eight potential boundaries (1|2, 2|3, …, 8|9). Due to obvious 
dissimilarity, zero was excluded from this categorization analysis. A 
boundary divided the correlation matrix into four squares. Correla-
tion coefficients in the upper-left (within small-number category) 
and lower-right squares (within large-number category) of the matrix 
were then iteratively compared with the coefficients in the remaining 
upper-right and lower-left (across-category) matrix squares for differ-
ent number boundaries. For each boundary, the difference between 
within-category and across-category elements was then quantified 
using a two-sided Mann–Whitney U test (α = 0.01, Bonferroni-corrected 
for multiple comparisons of boundaries, n = 8). Note that the main 
diagonal was excluded as it reflects the correlation of each stimulus 
with itself, and that the correlation matrix is symmetric. Thus, only 
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values from the upper triangular portion of the correlation matrix 
were considered. For each boundary, we assessed the P value of the 
statistical test, and the average difference between within-category and 
across-category elements to evaluate how well the boundary divided 
the data into two categories. Pairs of correlation coefficients are not 
statistically independent due to their bivariate nature, which might 
bias the results of the Mann–Whitney U test. To account for this, we 
performed an additional permutation test by randomly shuffling the 
within-category and across-category labels 10,000 times and compar-
ing the test statistics of the random data to the true ones, using again 
a two-sided Mann–Whitney U test71.

SVM classification
For each unit, data were divided into ten classes according to the 
numerical value of the sample stimulus (16 trials per class) and spike 
trains per trial were smoothed (Gaussian kernel with σ = 150 ms) within 
the analysis window −300 to 1,200 ms (fixation onset to 100 ms after 
delay offset). A default multi-class SVM classifier53 was then trained 
and tested on the instantaneous firing rates at every 20 ms step72. We 
applied Monte-Carlo cross-validation, that is, we created multiple splits 
of our dataset (nrepetitions = 100) by randomly sampling 50% of the trials 
as training set, balancing conditions within each split. The remaining 
50% of the trials were used as test set. Thus, each training and test set 
comprised 80 trials. For each split, we standardized all firing rates by 
z-scoring (mean and standard deviation obtained from training data 
only), fitted the classifier to the training data, and assessed predictive 
accuracy by counting the instances for which a certain activity pattern 
of the test data was labelled correctly. The results were then averaged 
over all splits. To identify temporal clusters during which accuracy dif-
fered significantly from chance level (10% for ten classes), the analysis 
was repeated with randomly shuffled trial labels (nperm = 100), and a clus-
ter permutation test63 was performed. In short, we identified temporal 
clusters of significant values by comparing the true accuracy values 
against the distribution of random ones (αclus = 0.01). The significance 
of these ‘candidate clusters’ was then evaluated by comparison with the 
clusters of the random data (Prank < 1 %). Next, an SVM (with the same 
settings as above) was trained and tested on the firing rates obtained 
by averaging across the significant time window (60–1,200 ms). We 
assembled a confusion matrix, which counted the frequency at which 
a trial of a certain class was assigned different labels by the classifier.

Again, we analysed which boundary divided the data best into 
the categories of ‘small’ versus ‘large’ numbers. As before, we defined 
eight potential boundaries (1|2 to 8|9; excluding zero). Classification 
probabilities in the upper-left (within small-number category) and 
lower-right squares of the matrix (within large-number category) 
were iteratively compared with the classification probabilities in the 
remaining (across-category) matrix squares (lower left and upper right) 
for all number boundaries. The difference between both groups was 
then quantified using a non-parametric Mann–Whitney U test (α = 0.01; 
Bonferroni-corrected for multiple comparisons of boundaries, n = 8). 
Note that the main diagonal was excluded as it reflects correct classi-
fications, and that the confusion matrix is not symmetric (unlike the 
correlation matrix). For each boundary, we assessed the P value of the 
statistical test and the average difference between within-category and 
across-category elements to evaluate how well the boundary divided 
the data into two categories. The results of the Mann–Whitney U test 
were again verified using a permutation test.

Multi-dimensional state-space analysis
To analyse neural activity of a neuronal population, we defined an 
n-dimensional space, where each axis represents the instantaneous fir-
ing rate of a number-selective neuron. At any given time, the population 
activity is then characterized by a single point in this space, resulting 
in a neural trajectory as the activity evolves over time. In other words, 
we calculated the trajectories for the ten different numerosities in a 

121-dimensional space after averaging across conditions and smooth-
ing (Gaussian kernel with σ = 150 ms) spike trains for each number 
neuron. A Gaussian-process factor analysis model was then applied73, 
and the resulting neural trajectories were orthonormalized to order 
the dimensions by the amount of data covariance they explain. For 
visualization, only the top three dimensions (in terms of covariance 
explained) were considered.

Next, the neural population state was calculated by averaging 
firing rates across the significant time window (60–1,200 ms) for all 
trials. The neural state space was then orthonormalized using principal 
component analysis. For visualization, only the top two dimensions 
were displayed. We then applied unsupervised k-means clustering to 
partition all trials (n = 160) into two clusters33. In short, k-means clus-
tering iteratively partitions the data into k distinct non-overlapping 
clusters such that the distance between all elements of the cluster and 
every cluster’s centroid is minimized. We used the squared Euclidean 
distance as a distance metric, that is, centroids are the arithmetic mean 
of the elements in that cluster and repeated the algorithm 50 times with 
new randomly chosen initial cluster centroid positions.

We applied two criteria to evaluate the optimal number of 
clusters for our data. First, we calculated the Caliński–Harabasz 
index31, also called VRC, which is defined as the ratio between overall 
between-cluster variance and overall within-cluster variance. Maximiz-
ing the VRC value with respect to k classes yields the optimal number 
of classes. As a second criterion, we calculated the gap value32. It for-
malizes the heuristic ‘elbow method’, according to which the opti-
mal number of clusters can be found by locating the most dramatic 
decrease in error measurement (the ‘elbow’ or ‘gap’). Note that, unlike 
the Caliński–Harabasz criterion, the gap criterion is also defined for 
clustering solutions containing only one cluster. For cross-validation, 
the k-means clustering analysis was repeated 50 times, using only 75% 
randomly selected trials per condition for each cross-validation run.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data associated with this study are publicly available at https:// 
github.com/EstherKutter/Distinct-Neuronal-Representation-Of- 
Small-And-Large-Numbers-In-The-Human-MTL.

Code availability
The custom code associated with this study is publicly available at  
https://github.com/EstherKutter/Distinct-Neuronal-Representation- 
Of-Small-And-Large-Numbers-In-The-Human-MTL.
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