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Abstract

& There is general agreement that nonverbal animals and hu-
mans endowed with language possess an evolutionary precur-
sor system for representing and comparing numerical values.
However, whether nonverbal numerical representations in
human and nonhuman primates are quantitatively similar and
whether linear or logarithmic coding underlies such magnitude
judgments in both species remain elusive. To resolve these
issues, we tested the numerical discrimination performance of
human subjects and two rhesus monkeys (Macaca mulatta)
in an identical delayed match-to-numerosity task for a broad
range of numerosities from 1 to 30. The results demonstrate a

noisy nonverbal estimation system obeying Weber’s Law in
both species. With average Weber fractions in the range of 0.51
and 0.60, nonverbal numerosity discriminations in humans and
monkeys showed similar precision. Moreover, the detailed
analysis of the performance distributions exhibited nonlinearly
compressed numerosity representations in both primate spe-
cies. However, the difference between linear and logarithmic
scaling was less pronounced in humans. This may indicate a
gradual transformation of a logarithmic to linear magnitude
scale in human adults as the result of a cultural transformation
process during the course of mathematical education. &

INTRODUCTION

Several lines of evidence suggest that abstract numerical
competence is a sovereign faculty independent of lan-
guage. Innumerate human adults (Gordon, 2004; Pica,
Lemer, Izard, & Dehaene, 2004), numerate human adults
prevented from counting verbally (Barth, Kanwisher, &
Spelke, 2003; Whalen, Gallistel, & Gelman, 1999), prever-
bal infants (Feigenson, Dehaene, & Spelke, 2004), and non-
verbal animals (Nieder, 2005; Brannon & Terrace, 1998,
2000) all can discriminate numerical quantity. Still, the na-
ture of numerosity representations remains controversial.

Data exploiting spontaneous behavior in infants and
animals have suggested the representation via an object
tracking mechanism, which is suited to discriminate sets
limited to four items only. This implicit representation
of small numerosities assigns ‘‘markers’’ to particular
items in a set and allows for fast, precise, and auto-
matic discrimination performance (Feigenson et al., 2004;
Hauser, Carey, & Hauser, 2000; Kahneman, Treisman, &
Gibbs, 1992; Mandler & Shebo, 1982). However, more
recent studies showed that 6-month-old infants are also
able to discriminate much larger numerosities (e.g., 8 vs.
16) which, by definition, cannot be processed by the
object tracking mechanism (Xu, 2003; Xu & Spelke,
2000).

Another more traditional view of the nonverbal nu-
merosity coding is the analog magnitude representation.

This system allows approximate numerosity discrimina-
tion relying on estimation (e.g., Nieder & Miller, 2004a;
Nieder, Freedman, & Miller, 2002; Whalen et al., 1999;
Dehaene, 1992). Estimation of numerical quantity is
characterized by the ‘‘numerical distance effect’’ (dis-
crimination performance between quantities improves
with increasing numerical distance) and the ‘‘numerical
magnitude effect’’ (greater numerical distances between
quantities are required to discriminate larger absolute
magnitudes). The analog magnitude system allows for a
continuous estimation of set sizes without an upper limit
of numerosity encoding, but does become systematically
less precise with increasing numbers. Thus, the hallmark
of analog magnitude representations is that they obey
Weber’s Law (Weber, 1850).

All studies performed in behaviorally trained animals
argue for an explicit representation of both small and
large numerosities via this continuous analog magnitude
system showing the Weber Law signature. Two main
types of training protocols have been applied: the de-
layed match-to-sample task, in which equal numerosities
need to be matched (Nieder & Merten, 2007; Cantlon &
Brannon, 2006; Nieder et al., 2002), and a bisection task,
in which a range of set sizes needs to be judged relative
to two trained numerical ‘‘anchor values’’ in a forced-
choice situation (Emmerton & Renner, 2006; Jordan &
Brannon, 2006a; Roberts, 2005, 2006). Ratio-dependent
analog magnitude representations have been found both
for simultaneously (Nieder & Merten, 2007; Cantlon
& Brannon, 2006; Nieder & Miller, 2003; Brannon &University of Tuebingen, Germany
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Terrace, 1998) and sequentially presented numerosities
(Beran, 2007; Nieder, Diester, & Tudusciuc, 2006).

Within the realm of the analog magnitude system, the
scaling of the numerical representations remains disput-
ed. According to the linear-coding hypothesis, internal
behavioral performance distributions are symmetric and
centered on each number on a linear scale (Brannon,
Wusthoff, Gallistel, & Gibbon, 2001; Gallistel & Gelman,
2000; Gibbon & Church, 1981; Gibbon, 1977). On the
other hand, within the framework of the nonlinear
compression hypothesis, numerical representations are
only symmetric distributions on a logarithmic-like com-
pressed scale (Nieder & Merten, 2007; Nieder & Miller,
2003; Dehaene, 1992, 2001; Dehaene & Changeux, 1993;
van Oeffelen & Vos, 1982). The critical variable to dis-
sociate the two hypotheses is the symmetry of the inter-
nal representations. Therefore, a mathematical model is
required to describe the behavioral performance distri-
butions and to evaluate their symmetry for particular
scaling schemes. To date, behavioral studies in monkeys
either tested only small numerosities or used an exper-
imental design not suitable to address the question of
scaling quantitatively.

Moreover, it is not known whether nonverbal numero-
sity representations in humans and nonhuman primates
are quantitatively similar. Basic quantity representations
might undergo transformations under the guidance of
precise symbolic representations in humans. If and how
language has an impact also on the nonverbal scaling
scheme is another debated issue. Interestingly, symbolic
number representations in humans seem to experience a
transformation of the scaling scheme with age and num-
ber proficiency (Siegler & Booth, 2004; Siegler & Opfer,
2003) which might, in turn, have an impact on nonverbal
magnitude representations. This issue is not settled,
mainly because identical behavioral protocols have rarely
been applied in a comparative manner in human and
animal species. The representation of large numerosities
(up to 30) has been studied just once in rhesus monkeys
and humans using an identical task (Cantlon & Brannon,
2006). Although the performance of both species clearly
obeyed Weber’s Law, the behavioral protocol applied in
this study could not inform about the scaling scheme
underlying numerical representations.

Behavioral data are necessary, but not sufficient, to
fully elucidate the scaling of numerical representations
because the behavioral outcome of an estimation task
may be the result of different scaling schemes at different
processing stages. However, recent single-cell record-
ings in numerosity-discriminating monkeys suggest a
close match between behavioral and neuronal numero-
sity representations (Nieder & Merten, 2007; Nieder &
Miller, 2004b; Nieder et al., 2002). Numerosity-selective
neurons discharged maximally to a preferred quantity
and showed a progressively declining activity with in-
creasing numerical distance from the preferred numero-
sity. The resulting numerosity-tuning curves allow a direct

comparison of neuronal tuning and behavioral tuning
functions. Evidence that populations of numerosity-
tuned neurons also exist in the human cortex came
from a functional imaging study, in which the tuning
behavior of neurons was read-out indirectly via an fMRI
adaptation protocol (Piazza, Izard, Pinel, Le Bihan, &
Dehaene, 2004).

In the current study, the numerical discrimination per-
formance of rhesus monkeys and adult humans was
tested for a broad range of numerosities (1–30) with
the very same delayed matching-to-sample task. Under
these circumstance, any differences in the humans’ and
monkeys’ nonverbal discrimination performance can be
attributed to representational differences, not to meth-
odological incompatibilities. The detailed performance
functions allow us to describe the data with the most
suitable mathematical model, to quantitatively evaluate
the distributions, to analyze the Weber fractions and to
determine the best scaling scheme.

METHODS

Subjects

A total of 36 volunteers (20 men, 16 women), ages 22–
29 years, participated in the human psychophysical
experiments. In the monkey experiments, the behavioral
performance of two adult male rhesus monkeys (Macaca
mulatta) was investigated. Both monkeys, Monkey M and
Monkey W, were socially housed with other monkeys and
were treated in accordance with the guidelines for animal
experimentation approved by the Regierungspräsidium
Tübingen, Germany. From previous experiments, Mon-
key M was capable of discriminating numerosities 1 to 4
and Monkey W was familiar with discriminating numero-
sities 1 to 5.

Stimuli

Numerosity stimuli, consisting of multiple-dot patterns,
were generated using custom-written MatLab software.
For the standard stimuli, small black filled dots (diame-
ter of 0.178–0.288 visual angle) appeared on a gray
background of a large circular area with a diameter of
78 visual angle. Each stimulus contained a defined set of
dots that appeared at random locations within the
background circle. The diameter of each dot was ran-
domly varied within the given range.

To ensure that the number-discrimination task was
solved by judging discrete quantity only, low-level visual
features were controlled for with additional stimuli. Two
sets of control stimuli were used (Figure 1A): area
control (total area of all items in a display equated for
all stimuli in a trial) and density control (same mean
density of dot patterns for all stimuli in a trial). In order
to prevent the subjects from memorizing the visual
patterns of the displays, sample and test images that
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appeared in one trial were never identical and new sets
of stimuli were generated for each testing session.

Apparatus and Behavioral Protocol

The stimuli were presented on a 15-in. TFT display and
were viewed from a distance of 57 cm in a darkened
room. Eye movements were monitored with an infrared
eye tracking system, ISCAN, at a sample rate of 120 Hz. A
PC running the CORTEX program (NIMH) was used for
the experimental control and data acquisition.

The experimental set-up was identical for both hu-
mans and monkeys except for two technical details. First,
to maintain the viewing distance, monkeys sat in the
primate chair and were head-fixed, whereas, for humans,
an adjustable chin rest was used. Second, monkeys had
to grasp a lever to start a trial and to release the lever to
give a response and to receive fluid reward. Human sub-
jects pressed a button to indicate responses.

The subjects performed a delayed match-to-sample
task with numerosity displays as stimuli (Figure 1B). To
initiate a trial, the subjects fixated the central fixation

Figure 1. Delayed

match-to-numerosity

protocol and example

stimuli. (A) Example stimuli
(standard, area control, and

density control) for sample

numerosity 14, which had to
be discriminated from

numerosities 6, 10, 18, and 22.

(B) A trial started when the

monkey grabbed the bar and
fixated the fixation spot. A

sample stimulus (here, 22

dots) was followed by a delay

period. The test stimulus
contained either the same

number of items (‘‘match’’) or

a different quantity of dots
(here, 35 dots) (‘‘nonmatch’’).

Each nonmatch stimulus was

followed by a match stimulus,

with the same set size as
the sample. When a match

stimulus appeared, the

monkey was required to

release the lever to receive
a reward.
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spot for 500 msec. Each experimental trial started with a
sample stimulus (500 msec) containing a particular nu-
merosity of dots. After a delay of 1000 msec, a Test 1
stimulus was presented (1200 msec), which was either a
match (containing the same number of dots as the sam-
ple display) or a nonmatch (containing more or fewer
items than the sample). If the first test stimulus was a
match, the subjects had to respond. Otherwise, if the
first test was a nonmatch, the subjects had to withhold
the response until a second test stimulus appeared. This
second test stimulus (1200 msec) was always a match.
Match and nonmatch trials appeared with equal proba-
bility. Whenever a response error occurred, a red screen
was flashed before a new trial started after a timeout
period of 1 to 3 sec.

The gaze was restricted to within 1.758 visual angle of
the fixation spot during the sample presentation and the
delay period. Monkeys’ eye movements were monitored
in all experimental sessions. Human subjects were in-
structed to fixate during these time intervals, and for 23
human participants, eye movements were monitored.
There was no significant difference in discrimination per-
formance between human subjects whose fixation was
monitored and subjects whose eye movements were not
tracked (Wilcoxon test, p = .59). If a fixation error
occurred, the current trial was interrupted, a blue screen
was flashed, and a timeout period of 1 to 3 sec was in-
serted. The specific experimental protocols are described
in the following paragraphs.

Small Numerosity Protocol (Monkeys Only)

Prior to the experiment with large numerosities, monkeys’
performance for small numerosities was determined using
the same delayed match-to-sample task. Sample numero-
sities 1, 2, 3, and 4 were tested.

Transfer Trials Protocol (Monkeys Only)

Monkey W was engaged in the transfer trials experiment.
The monkey was reinforced to discriminate numerosities
1 to 5 in baseline trials. Transfer trials showing novel
numerosities 6, 7, and 8 were inserted in 15% of all tri-
als among baseline trials. The monkey was randomly
rewarded in 80% of the transfer trials, irrespective of
performance so that it was not reinforced to respond
‘‘correctly.’’

Large Numerosity Protocol (Humans and Monkeys)

To assess subjects’ performance to a broad range of
quantities, numerosities 1, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26, 28, and 30 were presented as samples. For
each sample stimulus, four match and four nonmatch
stimuli were generated. Match stimuli were composed of
the same number of items as the sample, but with dif-
ferent arrangements of dots and different dot sizes. The

numerosities of nonmatch stimuli (NNM) contained larg-
er or smaller numbers of items equidistant from the sam-
ple numerosity (NS). The nonmatch numerosities were
calculated using the factor f = 0.3 and 0.6 according to
the equation:

NNM ¼ roundðNSð1 ± f ÞÞ: ð1Þ

Consequently, the numerosities of nonmatch stimuli
were arranged symmetrically around the sample quanti-
ty. A total of 256 trials was presented in one block. Each
experimental block contained a set of standard and a set
of control stimuli (area or density). The monkeys com-
pleted four to eight blocks during one session. The type
of control stimulus (area or density) changed from ses-
sion to session. Each human participant completed two
blocks (512 trials) in one experimental session and was
randomly assigned to one of the control conditions. Ex-
perimental trials were randomized and balanced across
all relevant features.

Precision Protocol (Monkeys Only)

To precisely map the shape of the performance curves,
discrimination of sample numerosity 15 relative to all
other numerosities from 1 to 29 (in steps of one) was
examined. To ensure that the monkeys were paying at-
tention to the sample numerosities, sample numerosity
15 was only shown in half of the trials of a session,
whereas in the other 50% of the trials sample numero-
sities 1, 4, 8, 12, 18, 22, and 26 were presented. The
numerosities of nonmatch stimuli were determined ac-
cording to Equation 1. In this experiment, match and
nonmatch trials were also equally likely to appear.

Data Analysis

Data analysis was carried out with custom-written MatLab
software. For the monkey data analysis, data were aver-
aged across all sessions of a particular testing protocol.
To reduce noise in the human numerosity discrimina-
tion performance, it was necessary to pool the data from
all human participants. Otherwise, the nonmatch trials
would have been sampled only twice per subject at each
point because each of the two experimental blocks
tested every nonmatch numerosity just once. Average
performance accuracy (Pavrg) for each sample numero-
sity was calculated as follows:

Pavrg ¼ 100 � NMcorr þ NNMcorr

Nall
; ð2Þ

where NMcorr is the number of correct responses in
match trials (response after the first test stimulus),
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NNMcorr is the number of correctly recognized nonmatch
trials (response after the second test stimulus), and Nall

is the number of all presented test stimuli for the
particular sample. Because match and nonmatch trials
were equally likely to appear in the experiment, the
chance level for correct responses was 50%.

Performance curves for each sample indicate the
probability that displays in the test period were judged
as containing the same number of items as the sample
numerosity. The center data point of each performance
curve indicates the correct performance in the match
trials (where the first test display showed the same nu-
merosity as had been cued in the sample period). The
data points to the left and the right of the center indicate
performance in the nonmatch trials (i.e., where the first
test display showed a smaller or larger number of items);
for the nonmatch numerosities, the percentage of errors
for the respective nonmatch numerosity is plotted. For
more distant nonmatch numerosities from the sample,
fewer errors will be made, which demonstrates the nu-
merical distance effect. Therefore, the averaged perfor-
mance curves would have a peak function shape. In
analogy to quantity-selective neurons (Nieder & Merten,
2007; Nieder et al., 2002), which discharge maximally for
a preferred stimulus magnitude, give attenuated re-
sponses for not-preferred numerosities, and so, behave
like band-pass filters, behavioral performance curves are
also called filter functions.

The characteristics of the behavioral filter functions
for the different sample numerosities (e.g., symmetry,
curve width) could be determined by modeling the
performance curves with defined peak functions and
examining their parameters for the plots on linear or
nonlinear compressed scales. To determine which peak
function would model the behavioral filter functions
best, a symmetric Gaussian distribution

FðxÞ ¼ y0 þ a e
ðx�xcÞ2

2s2

� �
ð3Þ

and a symmetric sigmoid function

FðxÞ ¼ y0 þ 4a
1

1 þ e�
ðx�xcÞ

s

 !
1

1 þ e
ðx�xcÞ

s

 !
ð4Þ

were fitted to the precise performance distribution curve
for the sample numerosity 15 on a linear and a logarith-
mic scale. To acquire the best fit to the data, s (standard
deviation of the Gaussian distribution), s (steepness of
the sigmoid function), and a (amplitude) were adjust-
able during the fitting procedure. The peak function’s y-
axis offset ( y0) was set to zero, and the center of the
fitted distributions (xc) was fixed at the function’s sam-

ple value. Goodness-of-fit values (r2) were calculated to
evaluate the quality of the fits.

To address the question of the scaling scheme that
results in symmetric behavioral tuning functions, data
were plotted on a linear and three nonlinear compressed
scales. To describe the nonlinear scaling of sensory im-
pressions, Fechner proposed a logarithmic relationship
between the sensation (S) and the physical magnitude of
the stimulus (I) (S = k� log (I)) (Fechner, 1860). Stevens
(1861) postulated that the sensation of a stimulus is a
power function of the stimulus magnitude (S = k � In). In
the present study, we tested the representation of nu-
merosities using a power function (Stevens’ Law) with an
exponent of 1/2, a power function with exponent of 1/3,
and a logarithmic relationship (Fechner Law), in the
order of increasing nonlinear compression. To evaluate
the symmetry of the behavioral filter functions for differ-
ent scales, the Gaussian distribution was fitted to all
performance curves and r2 statistics were used to evaluate
the quality of the fitted curves. The more symmetrical the
filter functions on a particular scale, the better the fit of
the peak function and, therefore, the better that scale
describes the data.

To investigate the numerical magnitude effect, stan-
dard deviations of the Gaussian fits (s) describing the
widths of the behavioral filter curves were plotted versus
numerosity for different scales. Linear functions were fit-
ted to the standard deviations of the performance curves
for each scale. Here, low slopes of the linear fits to the
data would indicate constant standard deviations across
all numerosities.

The discrimination performance (just noticeable dif-
ference [JND] between two stimuli) was tested as a func-
tion of the absolute numerosity. Weber’s Law states that
the JND of a stimulus (�I) is proportional to the mag-
nitude of the physical stimulus (I) for different sensory
modalities. The Weber fraction (Wb) (the ratio of �I and
I) should be a constant if numerosities, such as various
sensory phenomena, are best represented on a nonlin-
ear scale. In order to derive Weber fractions for the
tested numerosities, data were plotted on a logarithmic
scale. The Weber fraction for numerosities is

Wb ¼ ðnJND � nÞ
n

; ð5Þ

where n is the sample numerosity of a particular filter
function and nJND is the numerosity that was correctly
discriminated from the sample in 50% of cases.

For the analysis of reaction times (RT), only trials
with correct responses to match trials were used. Re-
sponse latencies of nonmatch trials were not included
because the match stimulus in the second test was
predictable and only used to ensure that subjects were
paying attention.
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RESULTS

Both monkeys and humans performed a delayed match-
to-numerosity task that required them to assess the
number of items in multiple-dot patterns in a sample
period, retain that information in memory over a delay
period, and respond to one of the two test stimuli that
contained the same number of dots as were presented
in the sample (Figure 1). The first part of the Results
section deals with aspects specific to monkeys. In the
second part, data from humans and monkeys are pre-
sented in comparison.

Monkeys’ Abstract Numerical Quantity Concept

Small Numerosity Protocol

Both monkeys were previously involved in small nume-
rosity discrimination experiments (Monkey M: 1 to 4;
Monkey W: 1 to 5) for about a year. Prior to the intro-
duction of large numerosities, they showed high dis-
crimination performance of 81.7% (Monkey M, based on
at least 252 trials per sample numerosity) and 87.4%
(Monkey W; with a minimum of 575 trials per sample)
for small numerosities 1 to 4 (Figure 2A and C). Both
monkeys exhibited the characteristics of discrimination
peak functions we had observed before, such as the

numerical distance and size effect (Nieder et al., 2006;
Nieder & Miller, 2003, 2004a).

Transfer Trials Protocol

To test whether monkeys understand the concept of
numerosity, and thus, also discriminate novel numero-
sities correctly, Monkey W was confronted with novel
numerosities 6, 7, and 8 in transfer trials (see Methods).
As can be seen in Figure 3A, the monkey continued to
discriminate these novel numerosities; the performance
curves for new numerosities showed the same character-
istics and were comparable to the performance for the
previously learned small set sizes.

Large Numerosity Protocol

To further demonstrate an abstract knowledge of the
quantity concept, both monkeys were abruptly con-
fronted (i.e., from one day to the other) with nume-
rosities ranging up to 30. (Because the animals were
rewarded for all correct responses, these trials are not
true transfer trials). The results for the abrupt presenta-
tion of large numerosities are shown in Figure 2B and D
for Monkeys M and W, respectively. Each performance
curve consists on average of at least 251 standard and

Figure 2. Behavioral tuning

curves derived from the

monkeys’ performance to the
broad range of numerosities.

The functions ref lect the

probability that a monkey

judged displays in the test
period as containing the same

number of items as the sample

numerosity. The data point at
the center of each colored

function indicates the correct

performance in the match

trials for the sample
numerosities (shown in the

same color above each curve).

The data points to the left and

the right of the center ref lect
performance in the nonmatch

trials (i.e., where the first test

display showed a smaller or
larger number of items),

presented as the percentage

of errors for the respective

nonmatch numerosity. (A)
Monkey M’s and (C) Monkey

W’s performance curves for the

task with small numerosities

(1 to 4). (B) Monkey M’s and
(D) Monkey W’s filter functions

for the spontaneous transfer

from the discrimination of

small numerosities to the
discrimination of large

numerosities.
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control trials. Nonmatch numerosities immediately ad-
jacent to the sample numerosity (factor 0.3) were often
judged erroneously as containing the same number of
dots as the sample. At a larger numerical distance (factor
0.6), subjects made more correct rejections of nonmatch
numerosities. Monkey M’s average performance for each
tested numerosity was significantly better than chance
level (Binomial test, p < .0001). Similarly, for Monkey W,
discrimination performance was better than chance level
except for numerosity 20, where discrimination only
approached significance (Binomial test, p = .08); For
the highest numerosities 28 and 30, it did not differ from
chance ( p > .4). Notwithstanding, the characteristic
numerical distance effect was present for the highest
numerosities.

To investigate whether numerosity discrimination in
monkeys improves with time, we analyzed the overall per-
formance over several weeks of testing. For Monkey M
and Monkey W, the dataset consisted of 55 and 45 days
of testing, respectively, during each of which the mon-
keys performed, on average, 1200 (Monkey M) or 650
(Monkey W) trials. Figure 4 illustrates that the perfor-
mance improved over time for both animals; a linear
regression revealed significant correlations with positive
slopes for both Monkey M (r = .81, slope = 0.31, p < .001,
n = 55) and Monkey W (r = .82, slope = 0.44, p < .001,
n = 45).

Precision Protocol

To find out which of the standard peak functions—the
Gaussian function or the symmetric sigmoid function—
was better suited to describe the behavioral data, both
models were fitted to the detailed performance func-
tions for sample numerosity 15 plotted on a linear and
logarithmic scale. For both monkeys, these fits resulted
in identical goodness-of-fit values for both peak func-
tions (Monkey M: linear scale r2 = .80, log scale r2 = .96;
Monkey W: linear scale r2 = .91, log scale r2 = .97).
Therefore, for all further analyses, the Gaussian normal
distribution was used to model the discrimination per-
formance functions.

Characterization of Numerical Representations in
Humans and Monkeys

The averaged performance curves derived from the large
numerosity protocol revealed clear filter functions (see
Methods) for all tested sample numerosities (Figure 5)
for humans and monkeys. All subjects were relying on
abstract quantity information rather than on lower-level
visual features. For the monkeys, performance in sets of
control stimuli was never worse than in standard trials.
The analysis of average performance across sample nu-
merosities 1 to 30 revealed no significant difference
between standard (mean ± SD = 69.3 ± 3.3%), area
control trials (72.2 ± 5.6%), and density control trials

Figure 3. Monkey W’s discrimination performance in the transfer
trials experiment. (A) Discrimination filter functions for previously

trained, small numerosities (dotted line) and new, larger numerosities

(solid line). (B) Weber fractions for reinforced discriminations and

transfer tests.
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(67.3 ± 5.3%) in Monkey W (Friedman test, p > .1).
Monkey M’s averaged performance was not different for
standard (72.2 ± 3.2%) and density (70.4 ± 3.5%)
control trials (Wilcoxon test, p > .2), but he performed

significantly better in area (78.2 ± 3.5%) control trials
(Wilcoxon test, p < .01). Thus, only performance for
standard trials was used for further analysis of the
monkey data. Each filter function consisted of at least

Figure 5. Scaling of performance distributions for human and monkey subjects. Same layout as in Figure 2. The behavioral tuning curves
were plotted on linear [(A) Monkey M, (B) Monkey W, (C) humans] and logarithmic scales [(D) Monkey M, (E) Monkey W, (F) humans].

Figure 4. Learning curves

of the monkeys. Mean

performance plotted as a

function of days of training
for (A) Monkey M and

(B) Monkey W.
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2202 trials for Monkey M and 758 for Monkey W.
Humans showed no significant difference between stan-
dard (76.0 ± 7.5%), area (78.9 ± 7.0%), and density
(74.6 ± 7.3%) control trials (Friedman test, p > .06).
Therefore, standard and control trials were pooled
for further analysis of human data. Each human per-
formance curve was derived from a minimum of 1028
trials.

Both monkeys and humans showed a clear numerical
distance effect; subjects made most errors when the
nonmatch numerosities were adjacent to the match, but
performed progressively better with increasing numeri-
cal distance between numerosities. In addition, the nu-
merical magnitude effect was also present. Both species
required greater numerical distances to discriminate
between larger numerosities with equal precision.

Visual inspection of both monkeys’ and humans’ per-
formances suggested that the distributions were asym-
metric when plotted on a linear scale (Figure 5A–C);
slopes were more moderate for numerosities larger
than the sample numerosity compared to numerosities
smaller than the sample. However, plotted on a logarith-
mic scale (Figure 5D–F), the distributions became more
symmetric, suggesting that a nonlinear coding scheme
might be more appropriate.

To quantify the symmetry of the discrimination per-
formance curves for different scaling schemes, the data
were plotted on a linear scale, a logarithmic scale, and
scaled according to power functions with exponents of
1/2 and 1/3. The Gaussian distribution was fitted to the
filter functions for all tested numerosities. Because the
distributions were incomplete for sample numerosities 1
and 2, these data were excluded from statistical analysis.
Moreover, data for sample numerosities higher than 20
were excluded because they could not be presented as
match and nonmatch stimuli in a balanced way. In these
cases, the monkeys may have learned that the highest
numerosities were likely to be nonmatches, made fewer
errors, which resulted in a distortion of the performance
curves.

The mean goodness-of-fit values (Table 1) for all non-
linearly compressed scales were significantly higher (Fig-
ure 7A) for both monkeys (Wilcoxon test, p < .008) and
for human subjects (Wilcoxon test, p < .02). For Mon-
key M, the logarithmic scaling resulted in even higher r2

values compared to the power function scaling schemes

(Wilcoxon test, p = .01). The same picture—skewed
distributions on a linear scale, but symmetric functions
on a logarithmic scale—emerged for the most detailed
performance distribution of the monkeys measured for
sample numerosity 15 and a broad range of nonmatch
numerosities from 1 to 29 in increments of one item
(Figure 6) (see quantitative measures above).

Consistent with the logarithmic coding hypothesis
(Nieder & Miller, 2003), the standard deviations of the
Gaussian fits (s) to the behavioral filter curves (Table 2)
increased proportionally with an increase of numerosity
on a linear scale, but were constant when the data were
plotted on nonlinearly compressed scales both for hu-
mans (Figure 7C) and for monkeys (Figure 7B). (There
was no significant difference between the two monkeys
with respect to s of the Gaussian fit, so the data were
pooled for the plot.) In other words, data plotted on the
linear scale clearly showed the numerical magnitude
effect, and nonlinear scaling compensated for the pro-
portional broadening of the performance curves with
increasing stimulus magnitude. Interestingly, the slopes
for both monkeys and humans were very similar (see
Table 2), indicating numerical distance and size effects
of comparable magnitude in both species.

The Weber fraction values (calculated for perfor-
mance functions 4 to 20) were equal and constant across
all small and large numerosities for both monkeys (Mon-
key M: mean ± SD = 0.60 ± 0.09; Monkey W: 0.51 ±
0.07) (Figure 7D and E). Linear fits to the Weber fractions

Table 1. Mean Goodness-of-Fit Values (r2) of Gaussian Fits
to Performance Distributions Plotted on Four Different Scales

Linear Pow (1/2) Pow (1/3) Log

Monkey M .59 ± .14 .79 ± .11 .83 ± .10 .89 ± .07

Monkey W .76 ± .15 .89 ± .10 .91 ± .09 .93 ± .07

Humans .88 ± .06 .96 ± .04 .96 ± .03 .95 ± .02

The goodness-of-fit values (r2) (mean ± SEM ) were calculated for the
fits to the curves for numerosities 4–20.

Figure 6. Detailed discrimination performance functions of both

monkeys for sample numerosity 15. The functions are plotted on (A) a
linear and (B) a logarithmic scale.
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reveal slopes of 0.005 for Monkey M and �0.004 for
Monkey W, confirming the constancy of the values
across tested numerosities. The Weber fractions derived
from the precise performance curves (Figure 6) for nu-
merosity 15 in both monkeys (Monkey M: 0.51; Mon-
key W: 0.44) were in good agreement with the Weber
fractions seen for the broad range of sample numero-
sities. Only in the transfer trials (Figure 3B), the Weber
fractions of Monkey W were slightly elevated (0.56 ±
0.15). In humans, Weber fractions for numerosities 4
and 6 were evidently smaller than those for higher nu-
merosities, indicating higher performance precision
(Figure 7F). However, discrimination functions for nu-

merosities 8 to 20 exhibited a constant Weber fraction
(0.55 ± 0.03; slope of linear fit: 0.006).

Reaction Times

Analysis of RTs, measured for the correctly discriminated
match trials in the large numerosity protocol, showed
that the smallest numerosities elicited much faster re-
sponses than larger numerosities (Figure 8). This was
particularly true for the human subjects and Monkey W.
For numerosities 4 and above, the RTs reached a pla-
teau. The RTs of Monkey W (466.7 ± 39.6 msec) and
human subjects (455.5 ± 11.95 msec) were very similar,
whereas Monkey M reacted more than 100 msec faster
to all tested numerosities (312.8 ± 8.1 msec). These
faster responses may reflect the speed–accuracy trade-
off, as Monkey M’s discrimination performance was
slightly worse (broader performance curves and higher
Weber fractions) compared to Monkey W and human
subjects.

DISCUSSION

In this article, we investigated the behavioral character-
istics of nonverbal numerical representations in monkeys

Table 2. Linear Fit Slopes to Sigma of Gaussian Function
Fitted to Performance Distributions Plotted on Four
Different Scales

Linear Pow (1/2) Pow (1/3) Log

Monkey M 0.374 0.030 0.009 0.001

Monkey W 0.304 0.022 0.006 �0.001

Humans 0.421 0.042 0.016 0.005

The slopes of the linear fits were calculated based on the fits to the
curves for numerosities 4–20.

Figure 7. Quantification of performance functions for human and monkey subjects. Gaussian functions were fitted to the performance curves for

numerosities 4–20 and plotted on different scales. (A) Mean goodness-of-fit of the Gaussian distributions (error bars ± SEM ). (B, C) Standard

deviations (s) of the fitted Gaussian functions across all sample numerosities for (B) both monkeys and (C) humans. (D, E, F) Weber fractions
(derived from the logarithmic scale) for the behavioral filter functions of (D) Monkey M, (E) Monkey W, and (F) human subjects. The dotted lines

represent linear fits to the Weber fractions for sample numerosities 4–20 for the monkeys and 8–20 for human subjects.
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and human subjects engaged in an identical large nu-
merosity discrimination task. Our results confirm that
monkeys can abstract the set size of items in a multiple-
dot display irrespective of the appearance of the displays
and low-level visual features. Moreover, monkeys were
able to spontaneously generalize their numerosity dis-
crimination performance to quantities they have never
seen before. This work demonstrates that language-
endowed humans and nonverbal monkeys possess a
noisy quantity estimation system with similar precision.
Most importantly, the detailed analysis of the perfor-
mance distributions validates for both species the hy-
pothesis of nonlinear compressed scaling for nonverbal
numerosity representation.

The comparison of monkeys’ and humans’ perfor-
mance precision for large numerosities revealed no up-
per limit. We observed comparable filter functions and
similar average performance for humans and monkeys in
all three experimental conditions (standard and both
controls) for all tested numerosities (1–30). This argues
convincingly for a single analog magnitude representa-
tion system for small and large numerosities. A recent
brain imaging study in 3-month-old infants confirms also
that analog representation of numerosities extends
across small and large numbers alike (Izard, Dehaene-
Lambertz, & Dehaene, 2008). When comparing the visual
event-related potentials evoked by unforeseen changes
in the cardinality of sets, the authors observed a shared
brain response to both small (2 vs. 3) and large (4 vs.
8 and 4 vs. 12) number ranges.

Discrimination performance improved with increasing
numerical distance of the test stimulus from the sample
quantity (numerical distance effect). Performance distri-
butions became progressively wider for larger set sizes
(numerical size effect). These characteristics of numer-
ical representations confirmed the analog magnitude
representations for both species. Our findings are in
line with studies of Beran and coworkers, who observed
very similar performance of rhesus monkeys (Beran,
2007), apes (Beran, 2001, 2004), and humans (Beran,
Taglialatela, Flemming, James, & Washburn, 2006) dur-

ing a task in which the subjects were required to select
the larger of two sequentially presented sets of items (1–
10). In all these species, performance was correlated
with the ratio of the set sizes pointing to the distance
and magnitude effect and the involvement of an analog
magnitude estimation process. Most recently, it has been
demonstrated that monkeys can even perform basic arith-
metic operations, such as adding numerosities, based on
the analog magnitude system (Cantlon & Brannon, 2007).
Of course, language-endowed humans using number
symbols will always outperform animals in more demand-
ing mathematical tasks. Nevertheless, these data argue
that an understanding of numerical quantity is deeply
rooted in the primate brain as a fundamental determinant
of higher-level numerical cognition.

The response latencies of the human and monkey
subjects revealed similar functions for the tested nume-
rosities. An increase in RTs was detected only for nume-
rosities 1 to 2 (humans) and 1 to 4 (monkeys); for larger
numerosities a plateau was reached. A direct compari-
son of small RTs of humans and monkeys is difficult
because human RTs for trials with small numerosities
might interfere with serial counting processes. Because
we did not observe an increase of the RTs for nu-
merosities 6 and larger, it is very likely that numeri-
cal information was extracted by parallel mechanisms
(Barth et al., 2003). These findings are in line with
results of other large numerosity discrimination experi-
ments using limited sample presentation times in rhe-
sus monkeys (Jordan & Brannon, 2006a), chimpanzees,
and humans (Tomonaga & Matsuzawa, 2002; Mandler &
Shebo, 1982).

Abstract Numerical Quantity Concept

Our dataset clearly shows the monkeys’ abstract under-
standing of the concept of numerical quantity. First, the
monkeys (as well as human subjects) did not rely on low-
level visual features to solve the task. Completely new
sets of stimuli (including area or density control stimuli)
were generated for each experimental session, so the
sizes and arrangements of items in the displays were
randomized. Thus, it was not possible for the subjects to
memorize particular nonnumerical features of the stim-
uli and use them to solve the task. Second, the monkeys
were instantly able to discriminate a range of large
numerosities they had never been tested on before. In
transfer trials, the monkey reliably discriminated novel
set sizes of 6, 7, and 8 dots. In addition, both monkeys
showed spontaneous generalization to abruptly in-
troduced novel large numerosities with the same dis-
crimination characteristics as for the well-trained small
numerosities (albeit more noisy because of the smaller
number of trials).

Other studies have also shown that monkeys were
able to transfer their numerical knowledge to values they
have never seen before. Brannon and Terrace (1998)

Figure 8. Median reaction times for all tested numerosities (only

correct match trials).
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trained monkeys to respond to set sizes 1 to 4 in an
ascending order and these monkeys subsequently suc-
ceed to order novel numerosities 5 to 9 in a transfer test.
In addition, Nieder et al. (2006) reported successful
transfer of the discrimination behavior in a sequential
protocol. Monkeys learned to discriminate sequential
numerosities 2 and 4 and succeeded to discriminate
sequential numerosity 3 from 2 and 4 in transfer tests.
Such findings argue for a true understanding of the
cardinality of sets, and thus, the concept of numerical
quantity. For pragmatic reasons, we only tested nume-
rosities up to 30 in the current study, but there is every
reason to believe that an infinite range of numerosities
can be discriminated by the monkeys—of course, at the
expense of the decreasing precision due to Weber’s Law.

Weber Fraction

Our results show that nonverbal quantity representa-
tions in both primate species obey Weber’s Law. Char-
acteristic Weber fractions were constant across set sizes
(4–20) for Monkey M (0.60) and Monkey W (0.51). This
indicates that monkeys use only the analog magnitude
system for the explicit representation of numerical
quantity. These results are in good agreement with data
reported in other studies. For example, Jordan and
Brannon (2006a) reported Weber fractions of 0.47 and
0.48 for rhesus monkeys engaged in a forced-choice
delayed matching-to-sample protocol. In this protocol,
the sample stimulus could adopt any value between 1
and 9, but the test was a forced choice between two
fixed values (2 and 8). Moreover, the same work showed
that monkeys improved their performance precision
due to training with decreasing Weber fractions from
0.58 to 0.32. For rhesus monkeys performing an ordinal
comparison task (Cantlon & Brannon, 2006), a Weber
fraction of 0.38 was found. The variation in the reported
Weber fractions in rhesus monkeys might be due to
different task demands, and it is likely influenced by the
stage of training of the animal on the specific task.

Compared to the two monkeys, the performance of
the human subjects in our study was very similar for
large numerosities (beyond 6). Most importantly, the av-
erage Weber fractions of humans (0.55) closely matched
the values of the two monkeys (0.51 and 0.60). Inter-
estingly, Piazza et al. (2004) found considerably lower
Weber fractions of 0.17 for human adults discriminat-
ing multiple-dots stimuli. A possible reason for this
difference might be the higher task demand in the
current study. Whereas Piazza et al. only used numero-
sities 16 and 32 as sample, our task design required the
subjects to discriminate almost any given numerosity
from the other. Cantlon and Brannon (2006) found a
Weber fraction of 0.26 in humans performing the same
ordinal comparison task as the monkeys. However, the
more precise performance of human subjects in Cantlon
and Brannon compared to monkeys was accompanied

by longer RTs for humans (on average an additional
100 msec). This indicates that a tradeoff between speed
and accuracy might be an important reason for varying
Weber fractions.

Humans showed a clear performance advantage, and
thus, smaller Weber fractions for small numerosities. A
likely reason is that, although stimulus presentation times
were short, humans were able to symbolically enumerate
the items in stimulus displays with small quantities.
Alternatively, humans may, indeed, possess a separate
and precise system to represent small numerosities
(Mandler & Shebo, 1982). To address this issue, shorter
sample presentation times need to be tested for human
subjects.

Scaling

Most importantly, our study shows that the nonverbal
representation of numerosities in both humans and
monkeys is described best on a nonlinear scale. Plotted
on a linear scale, performance distributions were asym-
metric. In contrast, nonlinear scaling of the filter func-
tions resulted in symmetric peak functions which were
reflected in significantly higher goodness-of-fit values
and constant standard deviations of the fitted Gaussian
distributions for all tested numerosities.

In more detail, our results indicate that the logarith-
mic scale (Fechner’s Law) described the data even better
than power function scales (Stevens’ Law). The goodness-
of-fit values of the monkeys’ performance functions were
highest for the logarithmic scaling. In addition, the
standard deviations of log-transformed discrimination
functions remained more stable across the tested nu-
merosities compared to the representations on power
function scales. These findings for large numerosities are
fully consistent with a previous report on small numero-
sities (Nieder & Miller, 2003).

The monkeys’ behavioral numerosity representations
are more precise than the average neuronal tuning func-
tions of single cells (Nieder & Merten, 2007). The pop-
ulation of numerosity selective neurons showed a mean
neuronal Weber fraction of 1.20 for numerosities 1 to 30.
In other words, the averaged precision of all cells is
considerably lower than numerosity discrimination per-
formance. However, this finding is consistent with the
‘‘lower envelope principle’’ (Parker & Newsome, 1998),
which argues that discrimination thresholds are based
on the most sensitive neurons of the population and not
on the population average. In agreement with the
behavioral data, the neuronal tuning functions obeyed
the Fechner Law and were best described on a logarith-
mically compressed scale.

Despite these overall similarities in the nonverbal
discrimination performances between human and non-
human primates, the logarithmic scaling scheme was less
pronounced in humans. The goodness-of-fit values (r2)
were high for all scales and the (significant) difference
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in absolute mean r2 values for linear versus nonlinear
representations were rather small. Assuming the findings
in monkeys mirror the original numerosity representa-
tions in non- and preverbal primates, analog magnitude
representations in enumerate humans seem to experi-
ence a shift toward linear scaling. We suspect that this
shift might stem from a gradual cultural transformation
of a nonverbal logarithmic scheme to a linear scheme
during the course of mathematical education. This as-
sumption is supported by work by Siegler and col-
leagues, who examined the representation of numerical
quantity in children and adults asking them to estimate
positions of numbers on a number line. They found a
shift from reliance on logarithmic to linear representa-
tions of numerical magnitudes between kindergartners
and second graders using the 0–100 number lines (Booth
& Siegler, 2006; Siegler & Booth, 2004) and between
second and sixth graders and adults using the 0–1000
number lines (Siegler & Opfer, 2003). In addition, the
same effect was found for other types of estimation tasks,
like computational, numerosity, and length measurement
estimation (Booth & Siegler, 2006; Siegler & Booth,
2004). Children with minor mathematical training relied
on logarithmic numerical scales that are probably de-
rived from nonverbal quantity representations. On the
other hand, advanced mathematical education led to
linear representations of numerical magnitudes. To test
whether the number line representation might be mod-
ified with age and numerical experience, and whether
language and cultural mathematic influences might have
altered the scaling in adults, children with different
levels of numerical experience should be tested on the
same numerosity discrimination protocol. Support for
this idea comes from studies using the bisection proto-
col. Testing children (4-, 5-, and 6-year-olds) and rhesus
monkeys on a very same task revealed a similar repre-
sentation of numerosity as analog magnitudes obeying
Weber’s Law (Beran, Johnson-Pynn, & Ready, 2007; Jordan
& Brannon, 2006b).

In conclusion, the striking similarities in numerosity
discrimination performance of both primate species
corroborate the view that numerical cognition has not
emerged de novo in humans, but has rather built on a
biological precursor system (Dehaene, 1997; Danzig,
1954) and that humans and monkeys share an ancient,
nonverbal quantification system (Cantlon & Brannon,
2006). Our study is an evidence for the representation of
small and large numerosities via a single analog magni-
tude system, best described on a logarithmic scale.
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