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A Labeled-Line Code for Small and Large Numerosities in the
Monkey Prefrontal Cortex
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How single neurons represent information about the magnitude of a stimulus remains controversial. Neurons encoding purely sensory
magnitude typically show monotonic response functions (“summation coding”), and summation units are usually implemented in
models of numerosity representation. In contrast, cells representing numerical quantity exhibit nonmonotonic tuning functions that
peak at their preferred numerosity (“labeled-line code”), but the restricted range of tested quantities in these studies did not permit a
definite answer. Here, we analyzed both behavioral and neuronal representations of a broad range of numerosities from 1 to 30 in the
prefrontal cortex of monkeys. Numerosity-selective neurons showed a clear and behaviorally relevant labeled-line code for all numer-
osities. Moreover, both the behavioral and neuronal tuning functions obeyed the Weber–Fechner Law and were best represented on a
nonlinearly compressed scale. Our single-cell study is in good agreement with functional imaging data reporting peaked tuning functions
in humans, demonstrating neuronal precursors for human number competence in a nonhuman primate. Our findings also emphasize
that the manner in which neurons encode and maintain magnitude information may depend on the precise task at hand as well as the type
of magnitude to represent and memorize.
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Introduction
Quantitative judgments rely on magnitude representations. Sen-
sory magnitude may be coded directly at the level of the sensory
epithelium. Most abstract categories, such as the number of ele-
ments of a set, however, need to be derived at integrative process-
ing stages of the brain.

Currently, two main hypotheses have been proposed for the
neuronal coding of magnitude. The “summation coding” (also
termed “monotonic coding”) hypothesis assumes that quantity is
encoded by the monotonically increasing and decreasing re-
sponse functions of the neurons (see Fig. 1a). In technical terms,
such neuronal response functions are equivalent to low-pass and
high-pass filter functions. Summation coding has been demon-
strated for sensory magnitude processing. For instance, prefron-
tal neurons encoding the magnitude (i.e., the frequency) of tactile
vibration have shown exclusively monotonic functions (Romo et
al., 1999; Brody et al., 2003; Romo and Salinas, 2003). Computa-
tional models of numerosity representation (Meck and Church,
1983; Zorzi and Butterworth, 1999; Zorzi et al., 2005) favor sum-

mation coding, which seems to be supported by psychophysical
data (Roggeman et al., 2007).

An alternative coding mechanism is the “labeled-line code”
(also termed “place code”). Here, the magnitude of a stimulus is
encoded by the maximum response rate of a particular neuron
and the tuning function is a peak function with the preferred
magnitude represented at the maximum of discharge. Techni-
cally speaking, quantity-selective neurons act like bandpass fil-
ters. Gaussian-shaped tuning curves have been found for the rep-
resentation of small numerosities in the prefrontal (PFC) (Nieder
et al., 2002; Nieder and Miller, 2003) and posterior parietal cor-
tices (PPC) of monkeys (Sawamura et al., 2002; Nieder and
Miller, 2004a; Nieder et al., 2006). These findings are consistent
with a functional imaging study measuring indirectly peak nu-
merosity tuning functions in humans (Piazza et al., 2004), as
well as with neural network models of numerical cognition
(McCloskey and Lindemann, 1992; Dehaene and Changeux,
1993). Computationally, summation coding and labeled-line
coding may not be mutually exclusive; peaked numerosity detec-
tors may also arise after integration of preceding summation
units (Dehaene and Changeux, 1993; Verguts and Fias, 2004).

Whether abstract, numerical quantity is encoded via a
labeled-line code, and if so, whether the representations still obey
the Weber–Fechner Law (Weber, 1850; Fechner, 1860), remains
controversial because of the restricted numerosity range, from 1
to 5, tested so far (Nieder et al., 2002, 2006; Nieder and Miller,
2003, 2004a). It has been argued that tuned numerosity-selective
neurons could be a special feature of the “subitizing” (object
tracking) mechanism providing access to small numerosities
(Mandler and Shebo, 1982; Feigenson et al., 2004) and that neu-
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rons selective to the most extreme numerosities (1 and 5) that
were categorized as bandpass-filtering neurons would actually be
low-pass or high-pass filters (Roggeman et al., 2007).

Here, we recorded single-unit activity in the PFC of monkeys
discriminating numerosities from 1 to 30. We only found evi-
dence for a labeled-line code (i.e., numerosity-selective neurons
exclusively exhibited peaked tuning profiles). Consistent with the
behavioral data, the neuronal tuning functions obeyed the We-
ber–Fechner Law and were best described on a logarithmically
compressed scale.

Materials and Methods
Subjects. Two male adult rhesus monkeys (Macaca mulatta) weighing 5.8
and 10.2 kg, implanted with recording hardware, were used in this study
to test the coding hypotheses (Fig. 1). All surgeries were performed under
sterile conditions while the animals were anesthetized with isoflurane.
The animals received postoperative antibiotics and analgesics. All proce-
dures were in accordance with the guidelines for animal experimentation
approved by the Regierungspräsidium Tübingen, Germany. All pre-
sented behavioral data were collected during recordings. Both monkeys
are still engaged in quantity discrimination.

Stimuli. Numerosity stimuli consisting of multiple-dot patterns were
generated using a custom-written MatLab software. These routines en-
abled the generation of new stimuli sets for each training session. More-
over, this software provided for the control of parameters of the dot
patterns. For the standard stimuli, small black filled dots (diameter of
0.17– 0.28° visual angle) appeared on a gray background of a large circu-
lar area with a diameter of 7° visual angle. Each stimulus contained a
defined set of dots that appeared at randomized locations within the gray
background circle. The diameter of each dot was randomly varied within
the given range. To prevent the monkeys from memorizing the visual
patterns of the displays, each quantity was tested with many different
images per session and the sample and test displays that appeared on each
trial were never identical. To ensure that the numerosity-discrimination
task was solved by judging the discrete quantity, low-level visual features
were excluded using control stimuli in addition to standard stimuli. Two
sets of control stimuli were used alternately in each session (Fig. 2b): area

control (total area of all items in a display equated for all stimuli in a trial)
and density control (same mean density of dot patterns for all stimuli in
a trial).

Behavioral protocol. Monkeys grasped a lever and fixated a central
target to start a trial (see Fig. 2a). A sample display (500 ms) was followed
by a memory delay (1000 ms). Next, a test display appeared, which was
either a match (containing the same number of dots as the sample dis-
play) or a nonmatch (containing, with equal probability, more or fewer
items). If the first test display was a match, monkeys released the lever to
receive a juice reward. If the first test display was a nonmatch, the mon-
keys held the lever until a second test display (always a match) appeared
that required to release the lever for a reward. Trials were randomized
and balanced across all relevant features. Monkeys were required to
maintain their gaze within 1.75° of visual angle of the fixation point
during sample presentation and the memory delay (monitored with an
infrared eye-tracking system, ISCAN, at a sample rate of 120 Hz).

Numerosities 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30
were presented as samples. For each sample stimulus, corresponding
match and nonmatch stimuli were generated. Match stimuli were com-
posed of the same numerosity of items like the sample, but with different
arrangements of the dots and different dot sizes. The numerosities of
nonmatch displays (NNM) contained equidistant larger or smaller quan-
tities of items compared with the sample numerosity (Ns). The non-
match numerosities were calculated using the deviations x � 0.3 and 0.6,
according to the equation NNM � round(NS � (1 � x)). Consequently,
the four nonmatch numerosities were arranged symmetrically around
the sample numerosity (two smaller and two larger than the sample
numerosity).

Neurophysiological recording. PFC recording chambers were placed
stereotaxically over the principal sulcus and anterior to the arcuate sulcus
using structural magnetic resonance imaging (MRI) scans acquired be-
fore surgery. Recordings were made from one left and one right hemi-
sphere in two monkeys, covering the principal sulcus and the ventral
bank of the PFC. Arrays of eight glass-coated tungsten microelectrodes
(Alpha Omega, Nazareth, Israel) were inserted using a grid (Crist Instru-
ments, Hagerstown, MD) with 1 mm spacing. Neurons were selected at
random. Waveform separation was performed off-line (Plexon, Dallas, TX).

Data analysis. Sample activity was derived from a 500 ms interval after
stimulus onset shifted by the individual response latency of a cell. To
measure neuronal response latency, we generated average spike density
histograms (at 1 ms resolution, smoothed by a sliding window; kernel bin
width, 10 ms) for a neuron’s responses to all sample stimuli. Discharges
after sample onset were compared with spike rates in a 200 ms interval
preceding sample onset. Response latency was defined by the first time
bin that reached a value higher or lower than any value before sample
onset. A default latency of 100 ms was used if no measure based on these
criteria could be derived. For the delay period, activity was summed in a
800 ms interval starting 200 ms after delay onset.

To determine numerosity selectivity of the neurons, a two-factorial
ANOVA was performed with numerosity (1–30) and stimulation condi-
tion (standard or control) as factors, for the sample and delay periods
separately. Only cells showing a significant main effect for numerosity
( p � 0.01), but no significant main effect for stimulus type (standard vs
control) or interaction were classified as “numerosity selective,” and the
numerosity eliciting the largest spike rate was defined as the “preferred
numerosity” of a given cell.

A cross-validation analysis was performed to estimate the reliability of
preferred numerosity determination. The preferred numerosity of a cell
was determined with one-half of the data (i.e., half of the randomly
shuffled trials) and correlated to the firing activity obtained with the
other half of the data. The preferred numerosity derived with the first half
of the data were plotted against the preferred numerosity obtained with
the second half of the data. This was done for the entire population of
numerosity-selective neurons and the relationship between preferred
numerosities in both data sets was quantified with a simple regression
technique: y � a � b � x, where y is the preferred numerosity of the
neurons for the first half of the data, x is the preferred numerosity of the
neurons for the second half of the data, a is the intercept, and b is the slope
of the x–y relationship. If both data sets resulted in identical preferred

Figure 1. Schematic of the two different coding hypotheses. A, Summation coding (mono-
tonic coding). Discharge rates vary as a monotonic function (increasing or decreasing) of the
numerical quantity of the stimulus. The number of activated units (illustrated by circles) en-
codes the numerical magnitude, much like an accumulator (shown for numbers 5 and 10). Both
decreasing (shown here) and increasing (data not shown) monotonic discharge functions may
be implemented. B, Labeled-line code. A particular unit firing maximally at its preferred nu-
merosity indicates the numerical magnitude of the stimulus. The tuning function is a peak
function reaching its maximum at the preferred numerosity.
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numerosities, Pearson’s linear correlation coefficient is 1. The correla-
tion analysis was repeated 100 times with newly shuffled trials and the
average correlation coefficient was calculated.

To create neural filter functions, activity rates were normalized by
setting the maximum activity to the most preferred numerosity as 100%
and the activity to the least preferred quantity as 0%. The normalized
individual tuning curves were then averaged across all neurons that had
the same preferred numerosity. Gaussian functions were fit to the pooled
performance functions of both monkeys and the pooled neural filter
functions of the sample and delay period (� 2-minimization after Leven-
berg–Marquardt). The Gaussian was chosen because it represents the
standard symmetric distribution and, thus, provided a means to compare
the behavioral functions. Data were plotted along four scales: a linear
scale, a power function with exponent of 0.5, a power function with
exponent of 0.33, and a logarithmic scale. The scales become increasingly
nonlinearly compressed along this sequence. The more symmetrical the
filter functions on a particular scale, the better this fit and, therefore, the
better that scale describes the data. These nonlinearly compressed scaling
schemes were chosen because Stevens’ power law (S � k � In) postulates
that sensation S is a power function of the stimulus magnitude I (Stevens,
1961), whereas Fechner’s Law (S � k � log( I)) proposes a logarithmic
relationship (Fechner, 1860).

The Weber threshold is defined as the 50% correct discrimination
between two stimuli. The Weber fraction for numerosity is (Weber, 1850;
Van Oeffelen and Vos, 1982) as follows:

Wb �
(max � min)

min
,

where max and min are the upper and lower cutoff values of the
performance/neural-filter functions. The Weber fractions for the behav-
ioral and neuronal analysis were derived after plotting the data on a
logarithmic scale, which best described the data, at 50% of the maximum
amplitude.

Results
Behavioral data
Two monkeys were trained on a delayed match-to-numerosity
task (Fig. 2a) that required them to judge whether successive
visual displays contained the same number of pseudorandomly
placed items (Nieder et al., 2002). Both monkeys were initially
trained to discriminate numerosities 1– 4. After they mastered
these small numerosities reliably, the range of numerosities was
extended up to 30 (presented in steps of two starting at numer-
osity 2).

To perform this task, monkeys needed to abstract the set size
of items from multiple-dot patterns that varied widely in appear-
ance and then retain that information in memory over a delay
period. Performance on sets of control stimuli confirmed that the
monkeys were relying on abstract quantity information rather
than on the exact appearance of the displays or lower-level visual
features (area or density of the dots). Monkeys made more errors
when the numerosities were adjacent and performed progres-
sively better as numerical distance between two displays in-
creased (numerical distance effect) (Fig. 3a). For larger quanti-
ties, the two numerosities had to be numerically more distant for
performance to reach the same discrimination level obtained
with smaller quantities at closer numerical distance (numerical
size effect).

As shown previously for small numerosities (Nieder and
Miller, 2003), the distributions of both monkeys’ performances
were asymmetric when plotted on a linear scale (Fig. 3a); slopes
were more moderate for numerosities larger than the sample
numerosity (represented by the center of each distribution) than
for numerosities smaller than the sample. However, when plotted
on a logarithmic scale, the distributions became more symmetric

(Fig. 3b), suggesting that a nonlinear coding scheme might be
more appropriate. To quantify this finding, we first determined
whether linear or nonlinear scaling models provided a superior
Gaussian fit to the behavioral data.

We plotted the data using four scales: a linear scale, a power
function with an exponent of 0.5, a power function with an ex-
ponent of 0.33, and a logarithmic scale (see Materials and Meth-
ods). All three nonlinear scales resulted in significantly better
goodness-of-fit values (r 2) than the linear scale ( p � 0.05, Wil-
coxon signed ranks test, two-tailed). The mean goodness-of-fit
values for the linear scale, power function with exponent of 0.5,
power function with exponent of 0.33, and logarithmic scale were
0.76, 0.87, 0.89, and 0.92, respectively (Fig. 3c). (Performance

Figure 2. Delayed match-to-numerosity task and example stimuli. A, Fixating monkeys
were cued for a given numerosity ranging from 1 to 30 by a sample display. The subjects had to
memorize the numerosity in a 1 s delay period and match it to a subsequent test stimulus (either
the first or the second test stimulus was correct) by releasing a lever. For each sample numer-
osity, four possible nonmatch numerosities were shown (two smaller than the sample by a
factor of 1.3 and 1.6, and two larger by the same factors). B, Example stimuli (standard, area
control, and density control) for sample numerosity 10, which had to be discriminated from
numerosities 4,7, 13, and 16.
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data for sample numerosities higher than 20 were excluded from
statistical analysis because the monkeys may have learned that the
very largest numerosities only appeared as nonmatch stimuli,
made fewer errors in such cases, and distorted the performance
curves.) Furthermore, the half-width of the distributions for each
numerosity (i.e., � of the Gaussian fit to the performance curves)
increased proportionally with an increase of numerosity on a
linear scale (slope of linear fit, 0.309), but decreased to almost
constant values when the data were plotted on a power-function
scale with exponents of 0.5 (slope, 0.027) and 0.33 (slope, 0.009),
or a logarithmic scale (slope, 0.001) (Fig. 3d). This result is pre-
dicted by a nonlinear coding model of numerosity (Van Oeffelen

and Vos, 1982; Dehaene and Changeux, 1993; Dehaene, 2001). In
other words, no differences in the widths of the distributions were
observed between small and large numerosities when plotted on a
logarithmic scale. For both small and large numerosity judg-
ments, thus, performance data are better described by nonlin-
early compressed scales, as opposed to a linear scale.

If the behavioral performance data obey Weber’s Law, the
Weber fractions for the broad range of tested numerosities
should stay constant. We calculated the Weber fractions after
fitting Gaussian functions to the data plotted on the best, loga-
rithmic scale. The Weber fraction values (mean 0.42 � 0.06 SD)
were equal and constant across all small and large numerosities
(see Fig. 8). Thus, all quantitative measures clearly indicate that
Weber’s Law holds for both small and large numerosity discrim-
inations, and that the data are consistent with the nonlinear com-
pression hypothesis (Nieder and Miller, 2003).

Single-cell data
We next analyzed the activity of 519 neurons recorded during
task performance from the lateral PFCs of the two monkeys. Of
these, 150 (29%) and 138 (27%) cells modulated their discharges
as a function of the numerosity (1–30) during the sample or
memory delay, respectively. This selectivity was found regardless
of the exact appearance of the multiple-dot pattern in the stan-
dard, area-controlled, or density-controlled condition [only cells
showing a significant numerosity effect, but no significant effect
of stimulus type (standard vs control) or interaction, were classi-
fied as numerosity-selective neurons according to a two-factor
ANOVA criterion, p � 0.01].

The neuronal responses showed clear numerosity tuning, with
maximum discharge to a preferred numerosity and activity de-
clining progressively with increasing numerical distance from the
preferred numerosity (Fig. 4). Across the large population of sin-
gle cells, we found neurons with preferred numerosities covering
the entire range between numerosities 1 and 30 (Fig. 5). Occur-
rence of preferred numerosity 1 was most frequent, with a pro-
gressive drop-off toward higher preferred numerosities (Fig. 6).
Only in the sample period, the highest preferred numerosities
(26, 28, and 30) were slightly over-represented. Both small and
large numerosities were neuronally represented by peak
functions.

A cross-validation analysis (see Materials and Methods) was
performed to estimate the reliability of preferred numerosity de-
termination. The preferred numerosity for the population of
numerosity-selective cells was highly reproducible, both for the
sample (average correlation coefficient r � 0.80; p � 0.0001) and
delay period (r � 0.76; p � 0.0001). This indicates that the pre-
ferred numerosity of the neurons was reliable and robust.

To analyze the tuning characteristics, mean neural tuning
functions of the whole population were constructed by averaging
activity across all neurons that preferred a given numerosity.
Gaussian functions were fitted to the population tuning curves
and quantitative measures [such as the goodness of fit (r 2), the
half-width (SD “�”), and the Weber fraction] (see Materials and
Methods) were derived. The best scheme should result in most
symmetric tuning functions. The goodness-of-fit (r 2) values of
the Gaussian fits were taken as a quantitative measure of the
symmetry of the tuning curve when plotted on a linear, power
function with exponents 0.5 and 0.33, or a logarithmic scale. The
(nonlinear) power function and logarithmic scales provided a
better fit to the data than the linear scale ( p � 0.05, paired-
samples t test, two-tailed). No significant differences were found
between the nonlinearly compressed scaling schemes (Fig. 7a).

Figure 3. Behavioral performance. A, Behavioral tuning curves derived from the monkeys
performance to the broad range of numerosities. The functions reflect the probability that a
monkey judged displays in the test period as containing the same number of items as the
sample numerosity. The center data point of each colored function indicates the correct perfor-
mance in the match trials for the sample numerosities (shown in the same color above each
curve). The data points to the left and the right of the center reflects performance in the non-
match trials (i.e., where the first test display showed a smaller or larger number of items),
presented as the percentage of errors for the respective nonmatch numerosity. B, Same data as
in A plotted on a logarithmic number scale. C, Goodness-of-fit of Gaussian functions fitted to the
performance curves plotted on different scales. The goodness-of-fit was significantly better for
the three nonlinear scaling schemes (error bars � SEM). D, Half-width (SD “�”) of the Gaussian
fits for linear and nonlinear scalings plotted against the center of the Gaussian function (which
is identical to the numerosity of the match stimulus). The dotted lines indicate linear fits. (The
values of � are related to the specific compression scheme.)
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As predicted by the numerical size ef-
fect based on Weber’s Law, the half-width
(� of the Gaussian fit) of the neural distri-
butions increased proportionally (slope
for linear scale, 0.383; p � 0.001) with nu-
merosity when the data were plotted on a
linear scale (Fig. 7b). The widths of the dis-
tributions became constant across preferred
numerosities when the data were plotted on
increasingly nonlinearly compressed scales
(slopes, power function with exponent 0.5,
0.029; power function with exponent 0.33,
�0.004; log � �0.009).

As for the behavioral performance
functions, we calculated the values of the
Weber fractions for the neuronal popula-
tion data plotted on the logarithmic scale
(see Materials and Methods). Consistent
with logarithmic coding, the Weber frac-
tions (mean 1.20 � 0.40 SD) were approx-
imately equal and constant across the
broad range of numerosities (Fig. 8).
Thus, all of our analyses support the no-
tion of a nonlinearly compressed coding
scheme for both small and large numerosity information.

Behavioral relevance of neuronal responses

Next, we compared behavioral and neural Weber fractions for all
numerosities. On average, the Weber fraction ratio between be-
havioral and neuronal data was 2.8, indicating an almost three-
fold greater sensitivity on the behavioral than the neural level
(Fig. 8). The Weber fraction ratio remained constant across all

tested numerosities (slope, 0.03, linear fit), although absolute
selectivity decreased with increasing numerosity, both at the be-
havioral and neural levels. This result suggests a direct relation-
ship between behavioral and neuronal representations.

If the responses of numerosity-selective neurons are directly
related to the monkeys’ categorical judgments, then numerosity
tuning should be degraded in trials in which monkeys made er-
roneous decisions. Therefore, we compared the responses of all
selective neurons to the preferred numerosity in correct trials

Figure 5. A–H, Example tuning functions of sample numerosity-selective neurons with different preferred numerosities 1 (A), 2 (B), 4 (C), 6 (D), 20 (E), 20 (F ), 28 (G), and 30 (H ). Error bars
indicate SEM.

Figure 4. Example numerosity-selective neuron. A, Dot raster display (each dot represents an action potential) showing the
detailed temporal response pattern of the neuron during several trial repetitions for the complete range of numerosities tested. B,
Tuning function derived by averaging discharges of the same neuron over the sample period resulted in a peaked function with
numerosity 20 eliciting the highest spike rate. Error bars indicate SEM.
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with error trials. Neural activity for the preferred numerosity
was significantly reduced to 71.4 and 69.5% of that observed on
correct trials (normalized to 100%) in the sample and delay ep-
ochs, respectively ( p � 0.001, paired-samples t test). This finding
is illustrated by a “clipping” of the averaged tuning peak on error
trials (Fig. 9). This suggests that the monkeys tended to make

judgment errors whenever the neurons were not able to properly
encode their preferred numerosity.

Discussion
We trained monkeys on a delayed match-to-sample task to dis-
criminate 1–30 items on a visual display. Numerosity-selective
neurons in the PFC showed clear peaked tuning functions, argu-
ing for a pure labeled-line code implemented for explicit numer-
osity judgments. Both the behavioral and neuronal tuning func-
tions obeyed the Weber–Fechner Law and were best represented
on a compressed scale. An examination of error trials suggested
that the activity of PFC neurons is directly related to the monkeys’
performance. Our single-cell data are in good agreement with
functional imaging data reporting peaked tuning functions in
humans.

Behavior
The average Weber fraction of 0.42 in the current study with large
numerosities was concordant with a previously reported value of
0.35 for small numerosities using the same task design (Nieder
and Miller, 2003). Interestingly, humans seem to have a lower

Figure 6. A, B, Frequency histograms showing the proportions of neurons tuned to different
preferred numerosities in the sample (A) and delay (B) period, respectively. Each of the dis-
played sample numerosities were preferred by individual neurons.

Figure 7. Characterization of neuronal tuning functions. A, Goodness-of-fit of Gaussian
functions fitted to the tuning curves plotted on different scales (error bars � SEM). B, Half-
width (SD “�”) of the Gaussian fits for linear and nonlinear scalings plotted against the center of
the Gaussian function. Dotted lines indicate linear fits.

Figure 8. Weber fractions for the behavioral and neuronal tuning functions. The dotted lines
indicate linear fits.

Figure 9. Comparison of neuronal tuning on correct and error trials. A, B, Normalized and
averaged discharges during sample (A) and delay (B) epochs of all tested cells plotted against
the numerical distance from the preferred number of items. Discharges to the preferred numer-
osity (numerical distance 0) were significantly reduced on error trials.
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Weber fraction of 0.17 when discriminating multiple-dot dis-
plays (Piazza et al., 2004). It needs to be emphasized, however,
that only sample numerosities 16 and 32 were used in the study by
Piazza et al. (2004), whereas in our approach the monkeys had to
discriminate almost any given numerosity from the other, caus-
ing maximum task difficulty. A direct comparison of the perfor-
mance of humans and monkeys using the very same task design
should clarify whether this difference persists under identical
conditions. Interestingly, humans’ and monkeys’ performances
on an ordinal numerosity comparison task were found previously
to be qualitatively and quantitatively similar (Cantlon and Bran-
non, 2006).

Analog magnitude system
Both the behavioral and neurophysiological data clearly demon-
strate the presence of a pure analog magnitude system. The ana-
log magnitude system can represent an unlimited amount of set
sizes and shows all characteristics postulated by the Weber–Fech-
ner Law, both for small and large numerosities. Thus, whenever
animals need explicit access to numerical quantity, the analog
magnitude system is activated (Nieder, 2005). In agreement with
previous findings in explicitly discriminating monkeys (Brannon
and Terrace, 1998; Nieder and Miller, 2004b) and other animals,
evidence for an object tracking system (also termed subitizing)
that is thought to allow precise representations, but only for up to
four items (set-size limit; in particular when items are presented
serially) (Feigenson et al., 2004), was absent. Thus, object track-
ing mechanisms remain restricted to studies exploiting sponta-
neous, unconditioned behavioral discriminations by accessing
implicit representations of the number of objects (Hauser et al.,
1996, 2000).

Labeled-line code in the primate cortex
The fact that we found neurons tuned to any presented numer-
osity from 1 to 30 unequivocally argues for the presence of a
labeled-line code in explicit numerosity discriminations, regard-
less of the amount of magnitudes to represent. Our current data,
together with previous reports about peak-tuned numerosity de-
tectors in the parietal lobe (Sawamura et al., 2002; Nieder and
Miller, 2004a; Nieder et al., 2006), suggest the presence of the
same labeled-line code for explicit numerosity representations in
the parietal lobe. Because we have shown that monkeys under-
stand the concept of numerosity and can immediately apply their
knowledge in transfer tests showing novel numerosities (Nieder
et al., 2006), it is plausible to assume that peak tuned numerosity
functions are spontaneously present and not forced by behavioral
conditioning.

Our single-cell data in the nonhuman primate are in good
agreement with functional imaging studies in humans. Using a
functional MRI adaptation method, Piazza et al. (2004) investi-
gated tuning to numerosity in humans. Functional MRI adapta-
tion to numerosity was present in the bilateral intraparietal sulcus
(IPS). Most notably, functional MRI adaptation revealed peaked
tuning profiles in the human IPS, which seemed to obey the
Weber–Fechner Law (Piazza et al., 2004). A previous study by the
same group (Piazza et al., 2007) has shown that numerosity-
related information does not only exist in the IPS, but also in
areas of the human frontal lobe. Consistent with these studies,
we now can show that Gaussian-shaped single-cell tuning
curves in the monkey exist for a broad range of numerosities.
This commonality suggests that humans and macaques have a
comparable labeled-line coding mechanism for the represen-
tation of numerosities.

Absence of summation units in explicit
numerosity representation
Many computational models of numerosity detection operate
with summation units on a level preceding the emergence of
peak-tuned numerosity detectors (Dehaene and Changeux, 1993;
Verguts and Fias, 2004). Our new data set, however, favors a pure
labeled-line code for numerosity. First, although neurons prefer-
ring numerosity 1 were over-represented, their response profiles
were too selective (i.e., their slopes were too steep) to make them
suitable as low-pass filters from which (in combination with
high-pass filter functions) peak functions with different preferred
numerosities could emerge. For instance, if the intersection be-
tween (presynaptic) high- and low-pass filters determined the
center of (postsynaptic) peaked tuning functions, monotonic
functions of variable slope (i.e., “cut-off” numerosities) would be
necessary to cover the broad range of preferred numerosities. In
keeping with this hypothesis, response profiles of neurons with
preferred numerosity 1 should vary considerably with respect to
shape and slope. As a consequence, the average Weber fraction of
neurons with preferred numerosity 1 should be much larger
compared with those of peaked functions. However, we observed
the opposite effect (Fig. 8). The neuronal Weber fraction of 0.80
for neurons tuned to numerosity 1 was even smaller than the
average Weber fraction across all tested numerosities (mean,
1.22). Thus, neurons tuned to numerosity 1 were even more se-
lective compared with the tuning functions of cells preferring
larger numerosities. This result strongly suggests that such neu-
rons do not act as low-pass summation units, but rather need to
be considered as detectors tuned to cardinal value 1.

The same finding held true for neurons preferring numerosity
30. Even neurons with the highest preferred numerosity showed
an average Weber fraction of 1.04 that was lower than the mean.
This observation again demonstrates steeper slopes for such neu-
rons and not shallower ones, as expected for high-pass filters. In
addition, cells discharging maximally for numerosity 30 were
hardly more frequent than neurons preferring intermediate nu-
merosities. (Note that a slightly increased frequency of preferred
numerosity 30 is even to be expected because few neurons as-
signed to this class may, in fact, have been tuned to numerosities
larger than 30.) If the emergence of peaked functions relied on a
presynaptic integration of low- and high-pass response func-
tions, a clear and balanced over-representation of monotonically
decreasing and monotonically increasing response functions
would be expected. In conclusion, both the selectivity and the
frequency of neurons tuned to numerosities 1 and 30 support the
notion of a pure labeled-line code subserving explicit numerosity
judgments.

Different coding strategies
Our results on a labeled line-based population code contrast with
studies of working-memory encoding of somatosensory stimuli
(Romo et al., 1999; Brody et al., 2003; Romo and Salinas, 2003) in
which purely monotonic response profiles characteristic for
summation units were found in the PFC. Behavioral training
effects are unlikely to account for the observed differences be-
cause the monkeys were highly trained to perform the tasks in
both the numerosity and the tactile discrimination projects. The
difference in the nature of quantities, however, may play an im-
portant role. In our study, numerosity was chosen as a discrete
and highly abstract category devoid of sensory particularities,
whereas Romo et al. (1999) explored the coding of a continuous
and dedicated sensory stimulus (vibrotactile frequency). In addi-
tion, the precise behavioral requirements may entail different
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coding schemes. Based on network simulations, Verguts (2007)
proposed previously that a comparison task (larger than/smaller
than) as applied by Romo et al. (1999) may favor summation
units, whereas the match-to-sample task (same/different) ap-
plied in our numerosity studies could give rise to a labeled-line
code. This interesting hypothesis has yet to be tested empirically
in the number domain. Yet another modeling study suggests that
optimal tuning curves are shaped according to their impact on
downstream neural circuits and on behavior (Salinas, 2006). In
sum, these contrasting findings emphasize that most likely there
is not a single type of working-memory code. The manner in
which neurons encode quantity information may depend heavily
on the precise task at hand as well as on the stimulus dimension to
represent and memorize.

Behavioral relevance of tuned numerosity detectors
Both the behavioral and neural data obeyed Weber’s law and were
closely related. The monkeys’ behavioral precision in numerosity
discrimination was found to be superior by a factor of 2.8 com-
pared with their neuronal filters’ selectivity. A comparatively bet-
ter behavioral performance is consistent with the “lower envelope
principle,” which posits that behavioral detection thresholds are
supported by the most sensitive individual neurons of a popula-
tion, not the population average (Parker and Newsome, 1998).

The analysis of trials in which the monkeys made judgment
errors further emphasizes the significance of numerosity tuned
neurons for behavioral responses. The spike rates at the preferred
numerosity of the neurons were significantly reduced whenever
the animals made a wrong decision. In other words, whenever the
numerosity detectors did not properly encode the preferred nu-
merosity by maximum discharges, the animals failed. This obser-
vation agues for a direct relationship between the neurons peaked
numerosity selectivity and the task performance of the neurons.
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