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Dopamine receptor activation regulates
reward expectancy signals during cognitive
control in primate prefrontal neurons

Torben Ott 1,2 , Anna Marlina Stein1 & Andreas Nieder 1

Dopamine neurons respond to reward-predicting cues but also modulate
information processing in the prefrontal cortex essential for cognitive control.
Whether dopamine controls reward expectation signals in prefrontal cortex
thatmotivate cognitive control is unknown.We trained twomalemacaques on
a working memory task while varying the reward size earned for successful
task completion. We recorded neurons in lateral prefrontal cortex while
simultaneously stimulating dopamine D1 receptor (D1R) or D2 receptor (D2R)
families using micro-iontophoresis. We show that many neurons predict
reward size throughout the trial. D1R stimulation showed mixed effects fol-
lowing reward cues but decreased reward expectancy coding during the
memory delay. By contrast, D2R stimulation increased reward expectancy
coding in multiple task periods, including cueing and memory periods. Sti-
mulation of either dopamine receptors increased the neurons’ selective
responses to reward size upon reward delivery. The differential modulation of
reward expectancy by dopamine receptors suggests that dopamine regulates
reward expectancy necessary for successful cognitive control.

The primate dorsolateral prefrontal cortex (dlPFC) implements cog-
nitive control via a range of cognitive subprocesses1. Neurons in dlPFC
are engaged in high-level functions such as working memory, endo-
genous attention, rule switching, and planning2–4. Such cognitive
processes areeffortful andusually require theprospectof reward tobe
executed by subjects5. The expectation of reward acts as a motiva-
tional signal to overcome the effort, or cognitive costs, associatedwith
cognitive control. Rewardexpectationmust thus bemaintainedduring
task performance.

Indeed, high rewardexpectation canguide goal-directed behavior
by improving cognitive control performance6,7. In line with behavioral
observations, reward expectation modulates neural activity related to
cognitive control subprocesses in dlPFC8–11. One such process is
working memory, the maintenance and manipulation of information,
which is encoded by delay activity of dlPFC neurons12–16. When mon-
keys performed a spatial working memory task in which a reward cue

at thebeginning of the trial indicatedhowmuch juice the animalwould
receive for correct choices, neurons in frontal cortex and dlPFC
encode both the expected reward as well as the spatial information
needed formovement preparation17–19. Expected reward canmodulate
neuronal encoding of cognitive factors such as spatial memory infor-
mation or object categories18,20,21. Based on these findings, it is sug-
gested that dlPFC uses value information to guide working memory22

and regulate costly cognitive control23.
Working memory and other cognitive control processes in dlPFC

are influenced by dopamine, a neuromodulator with a well-established
role in reward signaling and learning24. In dlPFC, two main dopamine
receptor families, D1R and D2R, mediate dopamine’s control of neu-
ronal activity. These dopamine receptor families play different, often
complementary roles in gating sensory signals25,26 working memory-
related processes (both D1R27–34 and D2R32,35–37), association
learning38–40, and the control ofmotoroutput35,37,41. Dopamine-releasing
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neurons exhibit bursts of activity in response to reward-predicting cues
or other salient events24,42. Therefore, dopaminehas beenhypothesized
to motivate costly cognitive control in dlPFC23. However, it is unknown
if and how dopamine receptors control the reward expectation signals
in dlPFC that could integrate information about upcoming rewards
with sustained cognitive control signals. Understanding dopamine’s
likely role in the interaction between reward signals and cognitive
control signals would help to disentangle dopamine’s diverse compu-
tational roles in motivating goal-directed behavior and their dysfunc-
tion in psychiatric diseases.

In the current study, we explored the role of dopamine when
reward expectation and working memory demands are combined
during a delayed match-to-sample task used to study working mem-
ory. We hypothesized that both D1Rs and D2Rs regulate reward
expectancy coding of dlPFC neurons during workingmemory. To that
aim, we investigated the activity of individual dlPFC neurons in rhesus
monkeys by selectively activating D1Rs or D2Rs in the dlPFC.

Results
Two male macaque monkeys were trained on a delayed match-to-
sample task in which sample images had to be memorized and mat-
ched to the subsequently shown test images (Fig. 1A). A reward cue at
the beginning of each trial signaled the amount of fluid reward the
monkey would receive after successful completion of this working
memory task. The two possible reward amounts (small or large) were
cued by two different types of cues to dissociate reward expectancy
signals from sensory signals related to cue appearance: a blue square
or a grey X-shape indicated that the monkey could expect a small

reward, whereas a red square or a grey circle signaled that themonkey
could anticipate a large reward (Fig. 1B).

Behavior
To verify that the monkeys had learned the meaning of the reward-
predicting cues, we analyzed the monkeys’ behavior in recording
sessions. We reasoned that the monkeys would be more motivated to
correctly complete a trial that promised a large reward compared to
trials resulting in a small reward. Indeed, performance accuracy (per-
centage of correct trials) was lower in trials with small reward expec-
tancy in comparison to trials with large reward expectancy for both
monkeys (Fig. 1C, D, Δ performance= 3.1% ±0.3% (large minus small
reward), n = 79 sessions, p < 10−6, ANOVA, for monkey 1; Δ perfor-
mance = 3.2% ± 0.4%, n = 80, p < 10−5 for monkey 2) and was not influ-
enced by reward cue set (p >0.2 for main factor reward cue set or
interactions between reward size and reward cue set). In addition, the
percentage of aborted trials, in whichmonkeys broke eye fixation, was
larger in trials with small reward expectancy compared to trials with
large reward expectancy for both monkeys (Fig. 1E, F, Δ
breaks = –17% ± 0.9%, n = 79, p < 10−10, for monkey 1; Δ
breaks = –14% ± 1.5%, n = 80, p < 10−10, for monkey 2), and was also not
influenced by reward cue set (p > 0.2 for all other comparisons).
Finally, reaction times (RTs) of bothmonkeys were longer in trials with
small reward expectancy compared to trials with large reward expec-
tancy (Fig. 1G, H,ΔRT = –42ms ± 2ms,n = 79, p < 10−10, formonkey 1;Δ
RT = –38ms ± 5ms, n = 80, p < 10−10, for monkey 2), again independent
of reward cue set (p >0.7 for all other comparisons). These three
behavioral parameters (performance accuracy, aborted trials, and RT)

B C

D

E

F

G

H

A

Fixation

Large

Color Shape

Reward cue

Small

Cue delay Sample Sample delay Test 1 Test 2 Response

Reward

500 ms 300 ms 1000 ms 600 ms 1000 ms 1000 ms 1000 ms

60

80

100

60

80

100

0

20 200

40040

0

60

80

100

60

80

100 50

200

400

00

Ac
cu

ra
cy

 (%
)

Ac
cu

ra
cy

 (%
)

Tr
ial

 br
ea

ks
 (%

)
Tr

ial
 br

ea
ks

 (%
)

Re
ac

tio
n t

im
e (

ms
)

Re
ac

tio
n t

im
e (

ms
)

***

***

***

***

***

***

Color
Large Small

Shape

Sample1 Large Small

Large Small

Large Small

Large Small

Large Small

Large Small

Sample2 Sample3

Sample1 Sample2 Sample3

Fig. 1 | Monkeys acquired expectations about cued reward size in a working
memory task. AMonkeys initiated a trial by grabbing a lever and fixating a central
fixation spot, which had to bemaintained throughout the trial. After a pure fixation
period, a reward cue predicted the amount of liquid reward the monkeys received
at the end of a trial for a correct choice (small or large). After a cue delay period, a
visual sample stimulus appeared on the screen, which monkeys had to memorize
during the sample delay period. In the test period,monkeys had to release the lever
if the same stimulus appeared (50% of trials) and to keep holding the lever if a
different stimulus appeared (50% of trials) to receive the cued liquid reward
amount. B Two sets of cues indicated the reward size, a color set (red square for

large reward, blue square for small reward) and a shape set (gray annulus for large
reward, gray cross for small reward).C Behavioral performance formonkey 1 for all
different conditions (left, single session example). Performance was lower on small
reward trials (right, all recording sessions) (p < 10−6, ANOVA, n = 79 sessions).
D Same conventions as in (C) for monkey 2 (p < 10−5, ANOVA, n = 80). E Percentage
of aborted trials (i.e., trials in which the monkey broke eye fixation) for monkey 1
was higher for small reward trials (p < 10−10). F Same conventions as in (E) for
monkey 2 (p < 10−10). G Reaction times of monkey 1 were higher for small
reward trials (p < 10−10). H Same conventions as in G for monkey 2 (p < 10−10).
*** p <0.001 (ANOVA).
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indicated that the monkeys understood the meaning of the reward
cues and that their reward expectation modulated working
performance.

Single-neuron recordings combined with micro-iontophoretic
drug application
We recorded 256 single units in 159 recording sessions (79 formonkey
1, 80 for monkey 2) from the dlPFC centered around the principal
sulcus of both monkeys (Fig. 2A), while the monkeys were performing
the task. Here, we focused on dopamine receptor modulation of
reward expectancy signals – dopamine receptor modulation of work-
ing memory signals in similar behavioral tasks were reported
previously32,33,36. To directly assess the impact of dopamine receptor
targeting agents on neuronal reward expectancy signals, each neuron
was recorded both without drug application (control condition) and
while applying dopamine receptor agents at the vicinity of the recor-
ded neurons using micro-iontophoresis (drug condition). Control
conditions alternated with drug conditions in each recording session.
In each session, we tested one of two different substances that selec-
tively targeted the D1R or the D2R: The D1R was assessed in 129 neu-
rons by applying the D1R agonist SKF81297. The D2R was tested in 127
neurons using theD2R agonist quinpirole. In previous experiments,we
could exclude any effect on neuronal firing properties when applying
normal saline with comparable injection currents25,32. As in previous

experiments32,33, we found that D1R stimulation slightly decreased the
baseline firing rates of dlPFC neurons (Δ firing
rate = –0.33 ±0.13 spikes/s, p =0.008, signed-rank test), whereas D2R
stimulation increased the baseline firing rates of dlPFC neurons (Δ
firing rate = +1.50± 0.29 spikes/s, p < 10−6) (Fig. 2B).

Reward expectancy neurons
We identified neurons with selective responses for reward size before
reward delivery (“reward expectancy neurons”) in three non-
overlapping analysis windows: (i) the cue period (400ms, beginning
100ms after reward cue onset to account for average neuronal
response latencies), (ii) the cue delay period (900ms, beginning
200ms after reward cue offset), and (iii) the sample delay period
(900ms, beginning 200ms after memory sample offset) (Fig. 2C, see
shaded trial periods in Fig. 2D). To that aim, we used analysis of var-
iance (ANOVA) with main factors ‘reward size’ (large/small), ‘reward
cue set’ (color/shape), iontophoretic ‘drug application’ (control con-
dition/drug condition), and ‘memorized sample’ (sample delay epoch
only). Neurons with a significant main effect of reward size (p < 0.05)
were included in subsequent analyses. To analyze dopamine receptor
modulation of reward expectancy signals irrespective of the visual
properties of the reward cues, we excluded neurons with significant
main effect for reward cue set or an interaction between reward size
and reward cue set (p <0.05). This analysis revealed that about half of
the neurons encoded reward expectancy in cue and/or delay periods
(145/256, not corrected for multiple comparisons) (Table 1). More
neurons preferred the small reward size, i.e., had a larger firing rate
during trials with small reward expectancy as compared to trials with
large reward expectancy, in the cue period (6% vs. 16 %, p =0.0003,
Chi-square-test) and cue delay period (11% vs. 18%,p = 0.04), but not in
the sample delay period (13% vs. 18%, p =0.2) (Table 1).

We first quantified the coding quality of reward expectancy
throughout the trial using a time-resolved reward discriminability
index (AUROC, the area under the receiver operator characteristic
derived from signal detection theory). Values of 0.5 correspond to an
absence of coding. Values larger than 0.5 indicated stronger coding
quality for large reward-preferring neurons, whereas values smaller
than 0.5 indicated stronger coding quality for small reward-preferring
neurons. Reward expectancy neurons encoded reward size at different
task periods, with different neurons showing transient or sustained
reward coding throughout the trial (Fig. 2C). To characterize typical
time courses for reward size coding in our population data, we visua-
lized the three first principal components that explained most of the
temporal variability observed in time-resolved reward coding includ-
ing all recorded neurons irrespective of coding properties (Fig. 2D).
Most neurons showed preferential coding for one of the temporal
components (sparse coding, see Methods), suggesting that these
components reflect typical reward coding dynamics. Prominent
reward coding dynamics were (i) phasic reward coding after reward
cue onset, (ii) semi-sustained reward coding in the cue delay period,
and (iii) sustained reward coding throughout the sample delay period.
These temporal patterns helped to define the three main analysis
windows to test whether dopamine receptor modulated neuronal
reward expectancy signals.

Reward cue period: D2R stimulation, but not D1R stimulation,
enhances reward expectancy signals
We compared the quality of coding of reward expectancy neurons in
the control (no-drug) condition with the D1R stimulation (SKF81297
application) condition during the reward cue period. A representative
reward expectancy neuron was barely influenced by D1R stimulation
(Fig. 3A).We constructedpopulation responses bypooling trialswithin
each reward cue set (i.e., small versus large) and averaging normalized
activity to the preferred and nonpreferred reward size, defined as the
reward size yielding the larger and lower firing rate, respectively. The
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firing rates of the population of all reward-selective neurons recorded
during sessions of D1R stimulation with SKF81297 were unchanged
(Fig. 3B). Consistent with these firing rate observations, D1R stimula-
tion with SKF81297 did not systematically change reward discrimin-
ability in the cue period (Fig. 3C, Δ AUROC=+0.01 ± 0.01, n = 30,
p =0.21, signed rank test, two-sided).

In contrast, D2R stimulation with quinpirole of another reward
expectancy neuron selective for small reward showed a prominent

increase in reward selectivity (Fig. 3D). This effect was systematically
observed for the population activity of all neurons recorded during
sessions with quinpirole application (Fig. 3E). Consequently, D2R sti-
mulation with quinpirole significantly increased reward discrimin-
ability in the cue period (Fig. 3F, Δ AUROC=+0.03 ± 0.01, n = 28,
p =0.05, signed rank test, two-sided). Thus, D2R stimulation, but not
D1R stimulation, increased reward expectancy coding of single neu-
rons during the cue period, when the cues were presented.

Table 1 | Number of reward expectancy neurons

Cue Cue delay Sample delay Nonmatch Reward All

SKF81297 sessions (large, small) 30 (9, 21) 31 (15, 16) 33 (12, 21) 25 (8, 17) 21 (14, 7) 129

Quinpirole sessions (large, small) 28 (7, 21) 43 (14, 29) 46 (22, 24) 27 (9, 18) 20 (7, 13) 127

∑ 58 (23 %) 74 (29%) 79 (31%) 52 (20%) 41 (16%) 256
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Fig. 3 | D2R acitivation, but not D1R activation, increased neuronal reward
expectancy signals during the cue period. A Example reward expectancy neuron
recorded during control conditions (left) and after stimulating D1Rs with SKF81297
(right) with higher activity for cues indicating large reward in the cue period (gray
shaded area, cue period). B Average normalized activity of all reward expectancy
neurons in the cue period (gray shaded area) recorded with SKF81297. Activity was
pooled over reward cue sets, and the preferred reward size was defined as the
reward size condition yielding higher average activity. Error bands represent +/-
SEM. C Reward discriminability (AUROC) in the cue period compared between
control and D1R stimulation. Left: Each point corresponds to one neuron. Right:

Average reward discriminability (AUROC) for control and D1R stimulation (30
neurons). Data are presented as mean values +/- SEM. D Example reward expec-
tancy neuron recorded during control conditions (left) and after stimulating D2Rs
with quinpirole (right) with higher activity for cues indicating small reward. E Same
conventions as in (B) for all reward expectancy neurons recorded with quinpirole.
Errorbands represent +/- SEM.FRewarddiscriminability (AUROC) in the cueperiod
compared between control and D2R stimulation. Left: Each point corresponds to
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*p ≤0.05, n.s. not significant (p >0.05), signed rank test.
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Cue delay period: D1R and D2R stimulation have opposite
effects on reward expectancy signals
We repeated the same analyses during the cue delay period. Here,
stimulating D1Rs with SKF81297 impaired the selectivity of an example
reward expectancy neuron selective for small reward size (Fig. 4A).
This effect was consistently observed for all selective neurons recor-
ded in sessions with SKF81297 application, showing that D1R stimula-
tion decreased selectivity for the neurons’ preferred reward size
(Fig. 4B). Accordingly, reward discriminability was impaired by D1R
stimulation with SKF81297 (Fig. 4C, Δ AUROC= –0.04 ± 0.01, n = 31,
p =0.012, signed rank test, two-sided), thus decreasing reward
expectancy coding.

In contrast, D2R stimulation with quinpirole increased the selec-
tivity for small rewards during the cue delay period of another reward
expectancy neuron (Fig. 4D), as also observed for the population of all
selective neurons recorded in sessions with quinpirole application

(Fig. 4E). In accordance, D2R stimulation significantly increased reward
discriminability (Fig. 4F, ΔAUROC=+0.02 ±0.01, n = 43, p = 0.0016,
signed rank test, two-sided), thus enhancing the neurons’ coding
capacity for reward expectancy. In sum, D1Rs and D2Rs acted oppo-
sitely on reward expectancy coding of single neurons during the cue
delay period.

Sample delay period: D2R stimulation increases reward expec-
tancy signals
We repeated the same analyses during the sample delay period. When
the monkeys memorized the sample in conjunction with the expected
reward size, we observed no clear modulation of reward expectancy
signals following D1R stimulation with SKF81297. This can be seen in an
example reward expectancy neuron that did not show altered reward
size selectivity (Fig. 5A). The absence of an effect was confirmed for the
population of reward expectancy neurons recorded in sessions with
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responds toone neuron. Right: Average rewarddiscriminability (AUROC) for control
andD2R stimulation (43 neurons; p =0.0016). Data are presented asmean values +/-
SEM. *p <0.01, *p <0.05, signed rank test.
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SKF81297 application (Fig. 5B). Consistent with these observations, no
significant changes in reward discriminability after D1R stimulation
were detected (Fig. 5C, Δ AUROC= –0.008 ±0.01, n = 33, p =0.69,
signed rank test, two-sided).

However, similar to the cue delay period, D2R stimulation with
quinpirole increased reward expectancy neurons’ response to its
preferred reward size, as can be seen for a small-reward preferring
example neuron (Fig. 5D). This effect wasmirrored in the population
of reward expectancy neurons recorded in quinpirole sessions
(Fig. 5E). Exploration of these neurons’ reward discriminability
confirmed that D2R stimulation on average increased reward dis-
criminability (Fig. 5F, Δ AUROC = +0.01 ± 0.008, n = 46, p = 0.018,
signed rank test). In sum, D2R stimulation, but not D1R stimulation,
increased neuronal reward expectancy signals in the sample delay

epoch, i.e., when themonkeysmemorized the sample in conjunction
with the expected reward size.

Dopamine receptors differentially modulate population
decoding of reward size
We next asked, based on decoding analyses, whether dopamine
receptor stimulationmodulated the population’s capacity to represent
the expected reward size. In the same three analysis windows as used
before, we trained a linear decoder to predict the binary class “reward
size” (small or large) by constructing population activity vectors of
pseudo-simultaneous single trials using cross-validated test and
training sets (see Methods). Overall, these decoders showed high
performance with little misclassifications of reward size (decoder
performance 80–90% across all analysis windows in control phases).
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Fig. 5 | D2R acitvation, but not D1R activation, increased neuronal reward
expectancy signals during the sample delay period. A Example reward expec-
tancy neuron recorded during control conditions (left) and after stimulating D1Rs
with SKF81297 (right) with higher activity for cues indicating large reward in the
sample delay period (gray shaded area, sample delay period). B Average normal-
ized activity of all reward expectancy neurons in the cue delay period (gray shaded
area) recorded with SKF81297. Activity was pooled over reward cue sets, and the
preferred reward size was defined as the reward size condition yielding higher
average activity. Error bands represent +/- SEM.CReward discriminability (AUROC)
in the sample delay period compared between control and D1R stimulation. Left:
Each point corresponds to one neuron. Right: Average reward discriminability

(AUROC) for control andD1R stimulation (33 neurons). Data are presented asmean
values +/- SEM. D Example reward expectancy neuron recorded during control
conditions (left) and after stimulating D2Rs with quinpirole (right) with higher
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(p >0.05), signed rank test.
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During the reward cue period, both D1R and D2R stimulation
increased the decoder’s performance to predict reward size from
population activity, showing an increase in correct and decrease in
incorrect classifications across both classes. The absolute classification
accuracies are shown in Fig. 6A, whereas classification accuracy rela-
tive to the no-drug control condition is depicted in Fig. 6B. D1R sti-
mulation with SKF81297 significantly increased the decoder’s overall
performance (Fig. 6E, Δ performance = +0.14 ± 0.03 with n = 129 neu-
rons, p = 0.014, shuffle test, two-sided). D2R stimulation displayed a
trend for increased performance (Fig. 6E, Δ performance= +0.10 ±0.7
with n = 127 neurons, p =0.075).

In the reward delay period, D1R and D2R stimulation produced
opposite effects on decoding performance (Fig. 6C, D): D1R stimula-
tion decreased the decoder’s performance (Fig. 6E, Δ
performance = –0.10 ±0.04withn = 129 neurons,p = 0.013),whileD2R

displayed a weak but statistically significant increase in decoder per-
formance (Fig. 6E, Δ performance = +0.06 ±0.02 with n = 127 neurons,
p =0.004). In the sample delay period, no clear change in decoding
was observed after either D1R or D2R stimulation (Fig. 6E).

Since the observation that D1R stimulation increased decoding
performance of reward size in the reward cue period is inconsistent
with the lack of an effect on reward discriminability (cf. Fig. 3C), we
asked whether the decoder’s performance depends on the types or
numbers of neurons included when training the decoder. Decoding
performance after D1R stimulation increased across a large range of
sampled neuronal sub-populations (Fig. 6F), suggesting that observed
effects are robust and not dependent on a few neurons. Further, when
using reward expectancy neurons only, no increase in the decoder’s
performance was observed (Δ performance= +0.01 ± 0.02 with n = 30
neurons, p =0.21), while there was a statistical trend increase in the

0

Tr
ue

 c
la

ss P(class)

ΔP(class)
(drug – control)

Predicted class

D1R
agonist

D1R
agonist

00.5

-0.2

0.21

0

P(class)
0.5

0.2

0

Cue Number of neurons

D1R agonist
D2R agonist

*
†

†
*

**

Delay 1 Delay 2-0.2

1

Tr
ue

 c
la

ss
Tr

ue
 c

la
ss

ΔP
er

fo
rm

an
ce

Pe
rfo

rm
an

ce

Tr
ue

 c
la

ss

Predicted class Predicted class

Predicted class Predicted class

ΔP(class)
(drug – control)

0

-0.2

0.2
Predicted class

D2R
agonist

D2R
agonist

Control
D1R agonist

A

C

B

E F

D

0
0.5

0.6

0.7

0.8

100

Fig. 6 | D1R and D2R differentially modulated population decoding of reward
size across task period. A Performance (probability of the decoder predicting the
correct reward size condition) of a linear decoder predicting the reward size class
(large or small) of held-out test trials before (left) and after (right) D1R stimulation
based on population activity in the cue period of all recorded neurons in
SKF81297 sessions (top row) and quinpirole sessions (bottom row). B Decoder
performance difference between control and drug conditions (top, D1R stimula-
tion; bottom, D2R stimulation). C Same display as in (A) for the decoder’s

performancebasedonpopulation activity in the cue delayphase.D Samedisplay as
in (B) for the cue delay phase. E Summary and statistical evaluation of D1R (reward
cue period: n = 129 neurons, p =0.014; reward delay1 period: p =0.013; sample
delay2 period: p <0.1) and D2R stimulation (reward cue period: n = 127 neurons,
p =0.075; reward delay1 period: p =0.004; sample delay2 period: p >0.1) of deco-
der performance across task periods. Data are presented as mean values +/- SEM.
F Decoder performance in the cue period dependent on the number of sub-
sampled neurons. **p <0.01, *p <0.05, †p <0.1, signed rank test.

Article https://doi.org/10.1038/s41467-023-43271-6

Nature Communications |         (2023) 14:7537 7



decoder’s performancewhen excluding rewardexpectancy neurons (Δ
performance = +0.10 ±0.04 with n = 99 neurons, p =0.059). These
results suggest that the decoder’s performance increase after D1R
stimulationwasprimarily drivenbyneurons not included in the reward
discriminability analysis. D2R stimulation did not significantly increase
the decoder’s performance in the reward cue period after excluding
reward expectancy neurons (Δ performance= +0.13 ± 0.04 with n = 99
neurons, p = 0.13). During the cue delay period, both D1R and D2R
stimulation decreased the decoder’s performance after excluding
reward expectancy neurons (D1R: Δ performance= –0.16 ±0.04 with
n = 98 neurons, p =0.0030; D2R: Δ performance= –0.16 ± 0.04 with
n = 84 neurons, p =0.042), a result consistent for D1R stimulation with
the overall population, but inconsistent for D2R stimulation. This
suggests that D2R’s increase in reward size decoding was primarily
driven by reward expectancy neurons. In the sample delay period,
neither D1R nor D2R stimulation altered the decoder’s performance
(p > 0.1 each).

Reward delivery: both dopamine receptors increase selective
responses to reward size
Beyond exploring reward expectancy modulation, we asked whether
dopamine receptors would also modulate neuronal responses to
reward size after reward delivery for correct choices. We identified
neurons selective to reward size with a 2-way ANOVAwithmain factors
reward size (large/small) and iontophoresis condition (control/drug)
that showed a significant main effect of reward size in a 500ms win-
dow starting 100ms after reward delivery (reward period) in correct
match trials. Reward delivery followed a monkey’s lever release as a
response during the matching test stimulus (cf. Fig. 1A). Since both
small and large reward required the same motor action with only the
reward size differing, we reasoned that response differences indicated
selectivity to delivered reward size. We identified 41 (16%) reward size
selective neurons. A similar number of neurons respondedwith higher
activity after large or small reward sizes (21 and 20 neurons, respec-
tively, or 8% each, p = 0.9, Chi-square-test).

An example neuron with higher activity for large reward com-
pared to small reward showed an increase in reward responses after
D1R stimulation (Fig. 7A), even though, in general, D1R stimulation
inhibited neuronal firing (cf. Fig. 2B). The population of all reward size
selective neurons recorded in SKF81297 sessions displayed amoderate
increase in responses to preferred reward size (Fig. 7B). Consistent
with these observations, SKF81297 increased reward size responses
quantified via the AUROC between spike rate distributions in large and
small reward trials in the reward period (Fig. 7C, Δ AUROC= +0.03 ±
0.01, n = 21, p =0.04, signed rank test, two-sided).

After D2R stimulation with quinpirole, neurons also showed ele-
vated responses to reward as can be seen in an example neuron
(Fig. 7D) but also in the population of neurons recorded in quinpirole
sessions (Fig. 7E). D2R stimulation increased reward size responses, as
well (Fig. 7F, ΔAUROC=+0.06 ±0.02, n = 20, p =0.003, signed rank
test, two-sided). In sum, both dopamine receptors increased selective
responses for reward size during reward delivery.

Finally, we asked how dopamine receptors modulate reward
expectancy signals during the presentation of a non-matching test
stimulus. In this task phase, the monkeys committed to a decision and
are thus not required to remember the visual stimuli while anticipating
reward delivery after lever release during subsequent presentation of
the matching test stimulus, allowing us to analyze reward expectation
signals in the absence of working memory load. A similar number of
neurons were selective for reward size during the non-matching test
period and, as in previous task epochs, more neurons preferred the
small reward size (Table 1, 7% small preferring vs. 14% large-preferring,
p =0.0085, Chi-square-test). We observed no significant changes in
reward discriminability after D1R stimulation during the non-matching
test stimulus presentation (Fig. 7G, Δ AUROC= +0.0003 ±0.02, n = 25,

p =0.81, signed rank test, two-sided). D2R stimulation significantly
increased reward discriminability (Fig. 7H, ΔAUROC=+0.036±0.016,
n = 27, p =0.046, signed rank test, two-sided), thus enhancing the
neurons’ coding capacity for reward expectancy. Dopamine receptors
thus showed a similar modulation of reward expectancy signals in the
non-matching test stimulus than in previous task epochs.

Discussion
We report that activating D1Rs and D2Rs modulates reward signals in
dlPFC neurons in distinct ways. D2R stimulation increased reward
expectancy signals throughout the trial and increased selective neu-
ronal responses to reward size after reward delivery. On the other
hand, D1R stimulation showed mixed effects, decreasing reward
expectancy signals in the cue delay period, while increasing selective
neuronal responses to reward size after reward delivery. These data
suggest tailored dopamine receptor modulation of prefrontal circuits
representing expected reward relevant for cognitive control.

Single neurons in the dlPFC represented expected reward mag-
nitudes following presentation of the reward cue and during the delay
period before and after sample presentation (“reward expectancy
neurons”). Information about upcoming rewards is particularly rele-
vant during cognitively demanding tasks, and previous studies have
found that dlPFC neurons are more sensitive to value information
during working memory performance10,43,44. Accordingly, representa-
tions of reward expectation in frontal cortex were found in a number
of previous studies8,9,18,43,45, and reward expectation modulated pre-
frontal visual46 and spatial memory signals8–11,18,47,48. Given that dopa-
mine neurons fire phasic bursts in response to salient sensory
events49,50 and, in particular, graded responses in response to cues
predicting expected reward51, it seems likely that the source of cortical
reward-related signals stem from lateral midbrain dopamine neurons,
whichpreferentially project to dlPFC52. However, since lateralmidbrain
dopamine neurons preferentially signal saliency instead of canonical
reward prediction errors42,44,53, the precise origin of dlPFC reward sig-
nals remains unclear.

Interestingly, more neurons were selective for small reward
expectancies compared to large reward expectancies throughout
reward anticipation, including the test stimulus period leading up to
reward delivery, where cognitive load was reduced since no working
memory was required. Given the continuous coding of reward
expectancy as well as similar dopamine receptor stimulation
throughout task epochs, the reward expectancy signals described here
likely reflect a coding of relative value between large and small reward,
rather than motivational factors alone54. Reward expectancy neurons
described here were typically not selective for other features of the
task such as the sample stimulus. In a previous study investigating
spatial working memory and reward expectation8, more neurons pre-
ferred the small reward size in the pool of neurons that did not show
spatial selectivity, akin to our findings. Further, a previous study
reported higher prefrontal dopamine levels following small reward as
compared to large reward predictions55. We speculate that dopamine
enables cognitive control by driving the motivation to obtain future
rewards to overcome the cognitive costs associated with effortful
cognition23. Small, but necessary, future rewards might require stron-
ger activation of prefrontal dopamine to nevertheless mediate suc-
cessful cognition or cope with stress55.

As reported previously, D1R activation slightly suppressed neu-
ronal firing in general30,32. Activating D1Rs did not systematically
modulate reward discrimination in the cue period, contrary to pre-
vious findings that D1R stimulation increased the signal-to-noise ratio
of sensory signals entering working memory26,32. However, decoding
performance of reward size in the cue period increased after D1R sti-
mulation, likely driven by the population of non- or weakly reward-size
selective neurons. Thus, D1Rsmight gate reward information reaching
dlPFC populations, similar to sensory signals. Given these mixed
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activity after large rewards (gray shaded area, reward period). B Average normal-
ized activity of neurons selective for reward size in the reward delivery period (gray
shaded area) recorded with SKF81297. Activity was pooled over reward cue sets,
and the preferred reward size was defined as the reward size condition yielding
higher average activity. Error bands represent +/- SEM. C Reward size response
(AUROC) after reward delivery compared between control and D1R stimulation.
Left: Each point corresponds to one neuron. Right: Average reward discriminability
(AUROC) for control andD1R stimulation (21 neurons, p =0.04). Data arepresented
as mean values +/- SEM. D Example reward neuron selective for reward size after
reward delivery recorded during control conditions (left) and after stimulating
D2Rs with quinpirole (right) with higher activity after large rewards. E Same
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control and D1R stimulation (25 neurons, p =0.81). Data are presented as mean
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stimulation (27 neurons, p =0.046). Data are presented asmean values +/- SEM. n.s.
not significant, **p <0.01, *p <0.05, signed rank test.
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findings, future studies are needed to corroborate D1R modulation of
phasic cue responses. In the delay period, however, D1R activation
systematically decreased neuronal representations of reward expec-
tations, along with population decoding performance of reward size.
This finding was unexpected, given that the same dose of D1R stimu-
lation increased spatial30 and feature33 working memory signals, and
representations of visual samples and abstract behavioral rules32. This
result suggests that neuronal networks representing reward signals
might be modulated distinctly from networks representing cognitive
signals, which are also modulated by D1Rs. A sub-process-specific
dopamine modulation could be the result of tailored dopamine input,
e.g., independent dopamine signals that carry reward or cognitive
information44,56. An impaired integration of reward and cognitive sig-
nals could underlie previous reports that blocking prefrontal D1Rs
impairs association learning and associated neural signals39, and
modulates attentional processing41. Mechanistically, D1-mediated
inhibition might be realized by increasing inhibitory postsynaptic
currents (IPSCs) in prefrontal pyramidal cells57,58. However, D1Rs have
also been shown to increase NMDA-evoked responses59,60, possibly
contributing to the D1-mediated enhancement of cognitive signals32,61,
suggesting that the present findings are dominated by inhibitory
effects.

During later stages of the task, including the sample delay and test
periods, we did not observe consistent D1R modulation of reward
expectancy signals. However, D1R stimulation increased neuronal
responses to reward size during reward delivery, despite the observed
overall inhibitory effects. This differential modulation of reward and
reward expectation across task epochs indicates that D1R modulation
of prefrontal networks is tailored: dlPFC sub-populations with dedi-
cated functional roles might be differentially regulated by prefrontal
D1Rs. For instance, signals related to the cognitive load, or cognitive
costs, during the delay period might be impaired by D1R stimulation,
whereas signals related to reward delivery might be enhanced by D1R
stimulation. These results suggest that reward responses and reward
expectation signals are realized by dissociable prefrontal circuits with
distinct dopaminergic regulation, which could be realized by distinct
dopamine neuron populations49.

D2R stimulation, on the other hand, improved neuronal reward
expectancy coding in both cue and delay periods, as well as reward
responses, and increased decoding performance of reward size in
several task periods. These results suggest that D2Rs could play a
prominent role in regulating prefrontal reward and reward expectancy
circuits. We have previously found that D2Rs modulate a variety of
prefrontal signals, such as feature-based working memory36 and the
representation of abstract behavioral rules32. Furthermore, D2Rs
modulate cognitive flexibility; blocking prefrontal D2Rs impairs
learning of new association rules in primates62 and impairs rodents in
shifting between different response strategies63. Thus, D2Rs might
contribute to the integration of a variety of prefrontal signals carrying
both information about rewards and information relevant for execu-
tive control, such as working memory, associations, and rules. In
addition, D2Rs are likely involved in the behavioral output, as they
modulate saccade signals in dlPFC35 and influence saccadic target
selection in the frontal eye field41. In general, D2Rs slightly increased
the neurons’ spontaneous activity, as reported previously32,35,64.
Mechanistically, excitatory D2R effects might be mediated by
decreasingGABAergic responses in pyramidal cells57. At the same time,
D2Rs have also been shown to increase interneurons’ excitability65.
D2R stimulation decreased reward size decoding in the cue delay
period after excluding reward expectancy neurons, i.e., strongly tuned
neurons. This suggests that D2R augment a recurrent winner-take-all
neural circuit, in which the tuning of strongly tuned neurons is
increased, while the coding of weakly tuned neurons is decreased.
Together, these mechanisms might induce an increase in neuronal
selectivity during delay periods that relies on recurrent neural circuits,

as suggested by computational modeling36. Thus, a general mechan-
ism such as in increase in neuronal gainmight explain D2Rmodulation
of working memory, abstract, and reward signals in dlPFC53.

The phasic discharges of dopaminergicmidbrain neurons leading
to a sudden and brief release of dopamine are ideally suited to explain
the reward prediction error24,66 and gating signals to dlPFC26,67,68.
However, during temporal gaps between sensory input and motor
output in delayed response or similar tasks, dopamine neurons are
typically less active24,69,70 (see ref. 71 for dopamine responses in delay
period in other tasks). The direct activity of dopamine neurons can
thus not explain the observed dopaminergic reward expectation
effects over the prolonged working memory task. However, three
related aspects could play a role. First, dopamine in frontal cortex is
notmetabolized instantaneously but its levels often last for seconds or
minutes72,73. Second, release of dopamine is not only caused by the
discharges of dopamine neurons; dopamine can also be released at
dopamine neurons’ terminal endings by local interactions74. Third, the
differential receptor affinities and distributions across neuron types
and cortical layers could enable different time course of dopamine
effects in dlPFC53,75,76. These mechanisms enable dopamine to differ-
entially act on a long timescale such as the prolonged reward expec-
tation phases used in the current study, even in the absence of
transiently activated dopamine neurons. Control and measurement of
local dopamine concentrations in dlPFC during cognitive control tasks
will be required to differentiate between these possibilities.

We have used dopamine receptor agonists to probe which neural
processes are modulated by dopamine receptor activation. While this
approach can directly relate dopamine receptor activation with its
consequence on neuronal activity and tuning, these experiments do
not directly demonstrate to what degree endogenous dopamine
release in the dlPFC modulates reward expectancy coding. Further
experiments using antagonists or manipulation of dopamine release
will be necessary to determine how dopamine signaling affects these
processes.

In sum, we found that both D1R and D2R stimulation exerts tai-
lored control of reward expectancy signals in dlPFC. Our results sug-
gest that dopamine informs or modulates dlPFC networks about
upcoming rewards and provides the motivational signals that enable
successful cognitive control. Vulnerabilities of the dopamine system
and cognitive control might therefore partially arise by impairing the
integration of the value of future goals with current cognitive
demands.

Methods
Animals and surgical procedures
Two male rhesus monkeys (Macaca mulatta), age 6 and 7 years, were
implanted with a titanium head post and one recording chamber
centered over the principal sulcus of the dorsolateral prefrontal cortex
(dlPFC), anterior to the frontal eye fields (right hemispheres in both
monkeys). Surgery was conducted using aseptic techniques under
general anesthesia. Structural magnetic resonance imaging was per-
formed before implantation to locate anatomical landmarks. All
experimental procedures were in accordance with the guidelines for
animal experimentation approved by the national authority, the
Regierungspräsidium Tübingen, Germany.

Task
Monkeys learned to perform a working memory task, in which we
manipulated reward expectation by cueing the amount of reward for
correct choices in each trial. Monkeys initiated a trial by grasping a
lever andmaintaining central fixation on a screen. After a pure fixation
period (500ms), a reward cue (300ms) cued the reward size the
monkeys would get for a correct choice at the end of trial (large or
small, animal-specific reward amount see below). The reward cue was
followedby a delayperiod (reward cue delay period, 1000ms)without
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visual cues. Then, a visual sample stimulus was presented (600ms)
that monkeys had to memorize during the subsequent delay period
(sample delay period, 1000ms). After the delay period, following a
match-to-sample task design, a test stimulus was shown, which was
either the same visual item as presented during the sample period
(match trial, 50% of trials) or a different visual item (non-match trial,
50% of trials). To make a correct choice, monkeys were required to
release a lever during test 1 only if the same matching stimulus
appeared and to keep holding the lever for another 1000ms if a non-
matching stimulus appeared, which was followed by the test 2 phase,
which always showed a matching stimulus and during which the
monkeys had to release the lever (1000ms). Thus, only test 1 required
a decision; test 2 was used so that a behavioral response was required
in each trial, ensuring that the monkeys were paying attention during
all trials.Monkeys received awater reward for a correct choicewith the
amount ofwater determinedby the reward cue shown in thebeginning
of each trial, corresponding to the reward size. We used two reward
sizes (small and large) and two reward cue sets (shape and color), i.e., 4
different reward cues in total. In the color cue set, a red square indi-
cated a large reward (monkey 1 0.8ml, monkey 2 1.0ml) and a blue
square a small reward (monkey 1 0.3ml, monkey 2 0.2ml). Reward
sizes ware adjusted so that both monkeys showed comparable beha-
vioral performance and effects of cued reward size difference. In the
shape set, a gray annulus indicated a large reward, and a gray cross
indicated a small reward (same reward amount as in the color condi-
tions). In each session, we used three new different, randomly selected
visual items (downloaded from flickr) as sample stimuli. Each sample
stimulus served also as non-matching stimulus and vice versa. Trials
were pseudo-randomized and balanced across all relevant features
(reward size, reward cue set, sample stimulus, match- and non-match-
trial). Incorrect trials or trials with broken fixationwere repeated at the
end of 48-trial blocks to ensure subsequent neural recordings included
correct trials balanced across all conditions.Monkeyshad to keep their
gaze within 1.75° of the fixation point from the fixation interval up to
the lever release indicating their choice (monitored with an infrared
eye-tracking system; ISCAN, Burlington, MA). If eye fixation was bro-
ken during the trial, the trial was aborted followed by a time-out
(1000ms) and counted as a break trial for behavioral analysis.

Electrophysiology and iontophoresis
Extracellular single-unit recording and iontophoretic drug application
was performed as described previously25,32. In each recording session,
up to three custom-made tungsten-in-glass electrodes flanked by two
pipettes each were inserted transdermally using a modified electrical
microdrive (NAN Instruments). Single neurons were recorded at ran-
dom; no attempt was made to preselect the neurons to any task-
related activity or based on drug effects. Signal acquisition, amplifi-
cation, filtering, and digitalization were accomplished with the MAP
system (Plexon). Waveform separation was performed offline (Offline
Sorter; Plexon).

Drugs were applied iontophoretically (MVCS iontophoresis sys-
tem; npi electronic) using custom-made tungsten-in-glass electrodes
flanked by two pipettes each25,32,77. Electrode impedance and pipette
resistance were measured after each recording session. Electrode
impedances were0.8–3MΩ (measured at 500Hz; Omega Tip Z;World
Precision Instruments). Pipette resistances depended on the pipette
opening diameter, drug, and solvent used. Typical resistances were
15–50MΩ (full range, 12–160MΩ). As in previous experiments25,32, we
used retention currents of–7 nA tohold thedrugs in thepipette during
control conditions. The ejection current for SKF81297 (10mM in
double-distilledwater, pH4.0withHCl; Sigma-Aldrich)was+15 nA, and
the ejection current for quinpirole (10mM in double-distilled water,
pH 4.0 with HCl; Sigma-Aldrich) was +40 nA. We did not investigate
dosage effects and chose ejection currents to match the values
reported to be maximally effective, i.e., in the peak range of the

‘inverted-U function’30,32,35. One pipette per electrode was filled with
drug solution (either SKF81297 or quinpirole), and the other always
contained 0.9% NaCl. In each recording session, control conditions
using the retention current alternated with drug conditions using the
ejection current. Drugs were applied continuously for about 12min
(drug conditions), depending on the number of trials completed cor-
rectly by the animal. Each control or drug application block consisted
of 72 correct trials to yield sufficient trials for analysis. The first block
(12min) was always the control condition.

A recording session typically comprised 2 control and 2 drug
sessions.Most neurons (75 %)were recorded including the first control
session. Given that iontophoretic drug application is fast and can
quickly modulate neuronal firing properties25, we did not exclude data
at the current switching points. We repeated the main analyses from
Figs. 3–6 excluding trials within a 120 s wash out period after switching
from a drug to a control block, which showed the same general effects
(Reward cue, D1: Δ AUROC=+0.0051 ± 0.0098, n = 24, p = 0.6; D2: Δ
AUROC=+0.25 ± 0.012, n = 27, p =0.075. Cue Delay, D1: Δ AUROC=
−0.032 ± 0.014, n = 29, p =0.013; D2: Δ AUROC=+0.021 ± 0.0091,
n = 41, p =0.007. Sample delay, D1: Δ AUROC= −0.0061 ± 0.013,
n = 31, p =0.9; D2: Δ AUROC=+0.023 ± 0.0088, n = 41, p = 0.008.
Reward response, D1:ΔAUROC= +0.034 ±0.016, n = 16, p = 0.068; D2:
Δ AUROC=+0.051 ± 0.017, n = 18, p =0.010).

Data analyses
Reward expectancy neurons. All well-isolated recorded single units
with a baseline spike rate above 0.5 spikes/s (determined in the 500ms
fixation period preceding sample presentation) and at least 12 trials in
each reward size, reward cue set, and iontophoretic drug application
condition (i.e., at least 96 trials in total) entered the analyses (n = 256
neurons). Each neuron was recorded for a median of 124 correct trials
(median 62 trials for the small reward and 62 trials for the large
reward). Neurons were not included based on drug effects. We used
analysis of variance (ANOVA) for each neuron to determine if a neu-
ron’s response was correlated with reward expectancy using spike
rates in four different, non-overlapping task epochs. The first analysis
period, the cue period, was defined using a 400ms window beginning
100ms after reward cue onset. The second analysis period, the cue
delay period, was defined using a 900ms window beginning 200ms
after reward cue offset. The third analysis period, the sample delay
period, was defined using a 900ms window beginning 200ms after
memory sample offset. The fourth analysis period, the non-match test
period, was defined using a 900ms window beginning 200ms after
presenting a non-matching test stimulus. In a fifth analysis period, the
reward period, we determined whether a neuron’s response correlated
with reward size after reward delivery, using a 500mswindow starting
100ms after reward delivery in correct match trials. Main factors for
each ANOVA were reward size (large/small), reward cue set (color set/
shape set) and iontophoretic drug condition (control/drug applica-
tion), including interaction terms. For the sample delay period, we
added a main factors and interaction terms for the memory sample
(pair-wise contrast coding). We labelled a neuron as selective for
reward expectancy (or selective for reward size in the reward period),
if it showed a significant main effect of reward size (p <0.05) and no
significant main effect of reward cue set (p >0.05) and no interaction
between reward size and reward cue set (p > 0.05). Thus, we isolated
neurons encoding reward expectancy signals (cue, cue delay, sample
delay periods) or responding to reward size (reward period). Only few
reward expectancy neurons also encoded the sample stimulus in the
same delay phase (10/79 in the cue delay period; 11/74 in the sample
delay period).

Single-cell and population responses. For plotting single-cell spike
density histograms, the averagefiring rates in trialswith oneof the four
different reward size cues (correct trials only) were smoothed with a
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Gaussian kernel (bin width of 200ms, steps of 1ms) for visual pre-
sentation only. For the population responses, trials with reward size
cues signifying the same reward sizewerepooled. Aneuron’s preferred
reward size was defined as the reward size (large or small) yielding the
higher average spike rate in the analysiswindowsused for theANOVAs.
The nonpreferred reward size was defined as the reward size resulting
in lower average spike rate. Neuronal activity was normalized by sub-
tracting the mean baseline firing rate (500ms fixation period preced-
ing reward cue presentation) in the control condition and dividing by
the standard deviation of the baseline firing rates in the control con-
dition. For population histograms, normalized activity was averaged
and smoothed with a Gaussian kernel (width of 200ms, step of 1ms)
for visual presentation only.

Reward discriminability encoding. We quantified each neuron’s dis-
criminability for reward size (small vs. large) using receiver operating
characteristic (ROC) analysis derived from signal detection theory78.
The area under the ROC curve (AUROC) is a nonparametricmeasure of
thediscriminability of twodistributions. It denotes theprobabilitywith
which an ideal observer can tell apart a meaningful signal from a noisy
background. Values of 0.5 indicate no separation, and values of 1 signal
perfect discriminability. We chose the firing rates for the large reward
size as signal distribution, and the firing rates for the small reward size
as noise distribution; by this convention, AUROC-values larger than0.5
indicated discriminability for large-reward expectancy neurons, and
values smaller than 0.5 signal discriminability for small-reward pre-
ferring expectancy neurons. The AUROC takes into account both the
difference between distribution means as well as their widths and is
therefore a suitable indicator of signal quality79. We calculated the
AUROC for each neuron using the spike rate distributions of the pre-
ferred and the nonpreferred reward size in the same analysis windows
used for the ANOVAs. Pair-wise non-parametric statistical tests were
used as indicated to compare selectivity between control and drug
phases.

To explore temporal reward expectancy throughout the task, we
calculated AUROCs between spike rate distributions in all large-reward
and small-reward trials using a sliding 150ms window (10ms steps,
control condition only) separately for all reward-expectancy-selective
neurons (neurons selective in either task period, see above). Neurons
were grouped into overall large- or small-reward-preferring based on
their firing rate average across the entire trials (fixation period to
match or nonmatch onset). For visualization purposes, we estimated
each neuron’s latency of reward response as the first time point when
the AUROC was higher than three standard deviations of baseline
AUROCs (fixation period before reward cue stimulus). If no latency
could be determined, neurons were grouped together with the largest
latency.

To explore typical temporal selectivity profiles for reward
expectancy, we used principial component analyses (PCA) of the
z-scored selectivity matrix including all neurons (AUROC entries for
each neuron and timepoint, nNeurons x nTimepoints with nNeur-
ons = 245 and nTimepoints = 340, control condition only). Neuron
loadings were typically sparse for the first 3 temporal components
(sorted by their eigenvalues, on average 60% of a neuron’s loading
between the first 3 components fell onto a single component), indi-
cating that reward-selective neurons followed one of the temporal
time courses visualized by the first 3 temporal components. These
time courses supported the inclusion of 3 main analysis windows for
reward expectancy encoding (reward cue, cue delay, sample delay).

Decoding analysis. We used decoding analyses to quantify the degree
to which population activity predicted reward size in each analysis
window (cue, cue delay, sample delay periods).We constructed a set of
pseudo-simultaneous recorded trials (35 trials per reward size and
iontophoresis condition, corresponding to the minimum number of

trials recorded in 90% of all neurons) by randomly sub-sampling large-
reward and small-reward trials (separately for control and drug con-
ditions) and calculating the average spike rate in the respective ana-
lysis window, yielding a population activity vector for each trial. We
then trained a linear decoder (using a support vector machine classi-
fier) to predict the binary class “reward size” (small or large) of the test
trial using leave-one-out cross-validation, iterating over trials such that
each trial served as the test set once. The decoder’s performance was
then given by the percentage of correctly classified trials. Standard
errors of the decoder’s performance across classes (confusion matri-
ces), and statistically significant performance differences between
control and drug conditions were estimated using n = 1000 bootstrap
samples (p =0.05, two-sided). To estimate the number of neurons
required for decoder performance, we repeated the decoder analysis
by randomly subsampling neurons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. The data can only be made
available from the authors on request because the data await further
analysis. Source data are provided with this paper.

Code availability
The code that support the findings of this study is available from the
corresponding author upon request. Only customarily available code
was used.
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