
Article
Feature-based attention p
rocesses in primate
prefrontal cortex do not rely on feature similarity
Graphical abstract
Time from test on [s]
0

20

Fi
rin

g 
ra

te
 [H

z]

Context A Context B

0 0.4 0 0.4
Highlights
d Prefrontal cortex neurons switch attention between

conjunctive features

d Neurons experience strong gain modulation in response to

attentional demands

d Attentional gain modulation is independent of neurons’

feature tuning

d Feature similarity is not a general mechanism in feature-

based attention
Stalter et al., 2021, Cell Reports 36, 109470
August 3, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.celrep.2021.109470
Authors

Maximilian Stalter,

Stephanie Westendorff, Andreas Nieder

Correspondence
andreas.nieder@uni-tuebingen.de

In brief

Stalter et al. characterize the effects of

feature-based attention on PFC neurons’

tuning while monkeys switch attention

based on two coupled features. Although

PFC neurons experience strong gain

modulation in response to attentional

demands, neuronal gain modulation is

not bound to the tuning preferences of

neurons. This finding contradicts the

feature-similarity gain model.
ll

mailto:andreas.nieder@uni-tuebingen.de
https://doi.org/10.1016/j.celrep.2021.109470
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2021.109470&domain=pdf


OPEN ACCESS

ll
Article

Feature-based attention processes
in primate prefrontal cortex
do not rely on feature similarity
Maximilian Stalter,1,2 Stephanie Westendorff,1,2 and Andreas Nieder1,3,*
1Animal Physiology Unit, Institute of Neurobiology, Eberhard-Karls-Universität T€ubingen, Auf der Morgenstelle 28, 72076 T€ubingen, Germany
2These authors contributed equally
3Lead contact

*Correspondence: andreas.nieder@uni-tuebingen.de
https://doi.org/10.1016/j.celrep.2021.109470
SUMMARY
Feature-based attention enables privileged processing of specific visual properties. During feature-based
attention, neurons in visual cortices show ‘‘gain modulation’’ by enhancing neuronal responses to the fea-
tures of attended stimuli due to top-down signals originating from prefrontal cortex (PFC). Attentional mod-
ulation in visual cortices requires ‘‘feature similarity:’’ neurons only increase their responses when the
attended feature variable and the neurons’ preferred feature coincide. However, whether gain modulation
based on feature similarity is a general attentional mechanism is currently unknown. To address this issue,
we record single-unit activity from PFC of macaques trained to switch attention between two conjunctive
feature parameters. We find that PFC neurons experience gain modulation in response to attentional de-
mands. However, this attentional gain modulation in PFC is independent of the feature-tuning preferences
of neurons. These findings suggest that feature similarity is not a general mechanism in feature-based atten-
tion throughout the cortical processing hierarchy.
INTRODUCTION

Processing of sensory stimuli is strongly modulated by a sub-

ject’s behavioral state. An important determinant of behavioral

state is top-down selective attention, a powerful mechanism

for privileged processing of behaviorally relevant stimuli at the

expense of irrelevant information. Visual selective attention is

typically classified into spatial and feature-based attention.

Spatial attention, which has been investigated most intensively,

prioritizes the processing of sensory input from a restricted part

of the visual scene. In contrast, feature-based attention focuses

on the selection of attended visual features (such as upward mo-

tion or the color red) irrespective of stimulus location (Liu, 2019;

Maunsell and Treue, 2006).

Selective attention generally enhances (or gains) the re-

sponses of sensory neurons to stimuli/features in the focus of

attention and diminishes responses to distractors, an effect

termed ‘‘gain modulation’’ (Buschman and Kastner, 2015; Desi-

mone and Duncan, 1995; Maunsell and Treue, 2006; Squire

et al., 2013). However, the origins of these neuronal correlates

of visual selective attention in sensory areas have been impli-

cated to lie in parietal (Saalmann et al., 2007) and especially fron-

tal cortical regions that exert top-down modulatory influence

(Buschman and Miller, 2007; Everling et al., 2002; Rainer et al.,

1998a). While the frontal eye field (FEF) has a key role in spatial

attention (Gregoriou et al., 2014; Moore and Armstrong, 2003;

Moore and Fallah, 2001), parts of the dorsolateral prefrontal cor-
This is an open access article under the CC BY-N
tex (PFC) constitute the causal basis for feature-based attention

(Baldauf and Desimone, 2014; Bichot et al., 2015, 2019). In

agreement with these differences in origin, physiological com-

parisons of feature-based and spatial attention suggest that

these two forms of attention operate through different feedback

networks (Bichot et al., 2015, 2019; Hayden and Gallant, 2005;

Maunsell and Treue, 2006;McAdams andMaunsell, 2000). How-

ever, the nature of feature-based attentional top-down signals

originating in PFC remains elusive.

Currently, it is tacitly assumed that feature-selective PFC neu-

rons show basically the same attentional effects as have been

described in visual cortical areas that receive top-down signals.

In an influential electrophysiological experiment, the responses

of middle temporal (MT) neurons were enhanced (i.e., gained)

when the attended and the neurons’ preferred motion directions

coincided but suppressed when they differed (Treue and Martı́-

nez Trujillo, 1999). Similarly, response in V4 to a preferred stim-

ulus in the receptive field (RF) was enhanced if this stimulus

matched a searched-for stimulus, whereas response to a non-

preferred stimulus showed no such enhancement. In both cases,

spatial attention was directed somewhere else, such that the

described effects can only be attributed to feature-based atten-

tion (Bichot, 2005; David et al., 2008). Single-unit findings like

these were captured in the ‘‘feature-similarity gain model’’ ac-

cording to which neuronal activity enhancement is a monotonic

function of the similarity between the attended feature parameter

and the neuron’s preferred parameter of this feature. In other
Cell Reports 36, 109470, August 3, 2021 ª 2021 The Author(s). 1
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words, neurons only increase their gain due to top-down signals

when attention is directed to their preferred feature parameter (or

location). In addition to a pure gain change, feature-based atten-

tion has been shown to alter the tuning preference of parietal

neurons; tuning often shifts to more closely match the attended

feature (David et al., 2008; Ibos and Freedman, 2014), an effect

likely mediated by top-down feedback signals (Compte and

Wang, 2006; Womelsdorf et al., 2008). Whether these attentional

effects and the feature-similarity gain model established for early

visual cortex extend to higher-order cortical areas such as the

PFC as the source of top-down attentional signals has never

been tested experimentally.

Here, we explore the coding properties of neurons of PFC,

which operates at the apex of the cortical hierarchy and contrib-

utes key feedback signals during feature-based attention in

behaving rhesus macaques. The monkeys were trained on a de-

layed conjunction matching task (DCMT) previously devised to

investigate behavioral state effects in parietal lobe (Ibos and

Freedman, 2014). While the monkeys were instructed to switch

their attention between two combinations of a stimulus’ motion

direction and color, we explored the neurons’ tuning properties

in relation to the attended stimulus features and parameters.

RESULTS

Monkeys flexibly used contextual cues
We investigated the influence of feature-based attention on sin-

gle neurons in the lateral PFC. To that aim, we trained two mon-

keys on a DCMT (Figure 1A) equivalent to the one used previ-

ously by Ibos and Freedman (2014). To identify target stimuli,

the monkeys had to use two task-relevant visual features: the di-

rection of motion and the color of the presented visual stimuli

(Figure 1B). The relevant context was set by one of two sample

stimuli that cued the monkeys on the relevant features, i.e., red

dots moving upward (sample A) or yellow dots moving down-

ward (sample B). After presentation of the sample stimulus and

a brief delay, a succession of up to three test stimuli followed.

The monkeys had to release a lever if a test stimulus matched

the current sample in both features, i.e., color and motion direc-

tion. In both contexts, the monkeys saw the identical set of test

stimuli. Because the sample stimulus identity varied on a trial-by-

trial basis, the relevantmotion direction and color varied too. This

allowed us to assess how flexible attention to the two different

stimulus features changed the responses of single neurons in

the PFC depending on the behavioral context, i.e., when the

monkeys searched for a certain motion direction and color. Trials

in which a sample A or sample B stimulus was shown were

defined as context A and context B trials, respectively. Since

the sensory appearance of the different test stimuli remained

constant between the contexts, the only aspect that changed

was themonkeys’ attention to the relevant features of the sample

stimulus.

Bothmonkeys performed the task well above chance (monkey

1: 95%, n = 75 sessions with an average of 576 ± 12 trials [SEM];

monkey 2: 97%, n = 48 sessions with an average of 403 ± 10 tri-

als [SEM]), indicating that they used both visual features for solv-

ing the task (Figure 1C). Overall, performance was close to per-

fect for both monkeys and stimulus contexts. Monkey 1 mildly
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preferred context B (96%) to context A trials (95%; p < 0.001;

Wilcoxon signed-rank test; n = 75), and monkey 2 had the oppo-

site preference (98% versus 97% on context A trials versus B tri-

als, respectively; p = 0.002 Wilcoxon signed-rank test; n = 48).

This mild sample preference was accompanied by a corre-

sponding small difference in false alarm rates (FARs) for the

two samples (DFAR (A-B) = 1%, p < 0.001 and DFAR =

�0.5%, p = 0.013 for monkey 1 and 2, n = 75 and n = 48 respec-

tively; Wilcoxon signed-rank test).

We measured the FAR to each of the possible test stimuli for

both monkeys. The overall error pattern is as expected (Figures

1D and 1E). We compared the FAR at each stimulus to the

average FAR across all stimuli. Asterisks mark the FAR to a stim-

ulus significantly different from the average FAR across all stimuli

(test for difference between two proportions; Zar, 2010; cor-

rected for multiple comparisons, p < 0.05). Red asterisks mark

FARs smaller than the average, and cyan asterisks mark FARs

larger than the average (Figures 1D and 1E). The animals made

nearly no false alarm to stimuli that were in their feature space

very far away from either sample stimulus but made more errors

to stimuli that were similar to the cued target stimulus and/or to

the alternative sample stimulus. These results show that the an-

imals learned the basic task structure. FARswere low for all stim-

ulus combinations and monkeys. Importantly, this was also true

for the test stimulus that matched the alternative and currently

nonvalid sample stimulus, i.e., the yellow, downward stimulus

in context A and the red, upward stimulus in context B (monkey

1: FAR = 0.16 in context A and 0.18 in context B; monkey 2:

FAR = 0.02 in context A and 0.05 in context B; all p < 0.01, bino-

minal test). This confirms that the monkeys were under stimulus

control and were paying attention to the specific sample param-

eters; they correctly ignored test stimulus B during sample A tri-

als and vice versa.

PFC neurons represent visual features in the test period
We recorded single-unit activity of 489 unbiasedly selected units

(n = 208 and n = 281 for monkey 1 and 2, respectively) in the prin-

cipal sulcus region of the lateral PFC while the monkeys per-

formed the DCMT (Figures 1D and 1E). A large proportion of

neurons (43% [208/489]) were selective to motion direction,

whereas 24% (115/489) were selective for color. These neurons

were counted as feature selective. The population of motion-di-

rection-selective neurons and the population of color-selective

neurons overlapped by 62 neurons (30% [62/208] and 54%

[62/115], respectively).

Neuronal activity of both motion-selective and color-selective

cell populations weremodulated during the test period as a func-

tion of task context (i.e., whether the features of sample A or B

were relevant). Figure 2 shows the responses of two example

neurons, a motion-direction-selective neuron (#1) and a color-

selective neuron (#2), during the test period for the two different

task contexts. Context-dependent responses of the motion-di-

rection selective neuron (#1) are displayed in Figures 2A and

2B. Neuron #1 displayed higher firing rates to different motion di-

rections (i.e., gain modulation) in the context of sample B

compared to sample A. A similar context-dependent effect

was observed for the color-selective neuron (Figures 2C and

2D). Example neuron #2 displayed higher firing rates for colors



Figure 1. Task protocol, behavioral performance, and recording

sites

(A) Delayed conjunction matching task (DCMT). A trial started when the

monkey grabbed a bar and fixated on a fixation target in the center of the

computer screen. After a fixation period, one of two sample stimuli (colored

and coherently moving random-dot displays) were shown that instructed the

monkey to which combination of features it had to attend throughout the trial.

Sample A cued for upward motion of red dots (0� angular motion direction);

sample B instructed downward motion of yellow dots (270�). After a brief

memory delay, the monkey had to compare the features of the sample stim-

ulus to the features of to three sequentially presented test stimuli. In equal

proportions and pseudo-randomized presentation, either the first, second,

third or none of the test stimuli showed both of the matching features. The

monkey had to maintain hold of the bar if one or both features did not match

and release the bar to indicate a match of visual features to receive a reward. If

none of the test stimuli was amatch, then themonkey was required tomaintain

hold of the bar for an additional 500 ms to be rewarded.

(B) Set of visual features. Top panel: test stimuli consisted of random-dot

displays of one of eight specific color hues ranging from red (color of sample A)

to yellow (color of sample B). Bottom panel: dots of the random-dot displays

moved coherently in one of eight different directions, each 45� apart. For the

test stimuli, eachmotion direction was pairedwith each color hue, resulting in a

set of 64 conjunct stimuli.

(C) Behavioral performance. The proportions of correct, miss, and false alarm

trials are shown for both monkeys (separately for sample A and B trials). Error

bars represent SEM across sessions.

(D) Confusion matrix depicting the false alarm rates (FARs) for all 64 test

stimulus combinations (8 directions and 8 colors) in context A. Top panel:

monkey 1. Bottom panel: monkey 2. The letter A marks the test stimulus that

matches the current sample stimulus A. The red squaremarks the test stimulus

that matches the currently non-matching sample stimulus B. Asterisks mark

FARs to a stimulus significantly different from the average FAR across all

stimuli. Red asterisks mark FARs smaller than the average, and cyan asterisks

mark FARs larger than the average.

(E) Same as in (D), but for context B.

(F) Recording location. The location of single-unit recording within PFC is

shown for a schematic drawing of a rhesus macaque brain.

(G) Anatomical surface reconstruction of the recording site for monkey 1 (left)

and monkey 2 (right). Recordings were performed dorsal and ventral to the

posterior end of the principle sulcus. The red ‘‘X’’ indicates the center of the

recording chamber. Abbreviations: PS, principle sulcus; SAR, superior sulcus

arcuatus; IAR, inferior sulcus arcuatus.
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in the context of sample A compared to sample B. In fact, the

neuron was virtually inactive when colors were presented in

the context of sample B.

We determined the preference of the directional motion tuning

and color tuning during the DCMT for all feature-selective neu-

rons. Across the populations of neurons, the preferred motion di-

rections were evenly distributed. This was true for context A (Fig-

ure 3A; Rayleigh test for circular uniformity, p = 0.47, n = 122/208)

and context B (Figure 3B; Rayleigh test, p = 0.09, n = 146/208).

(Note that neurons that were feature selective in both contexts

were included in the analysis of context A and B.) Similarly, the

preferred color values were evenly distributed across color-selec-

tive neurons in context B (Figure 3D; chi-squared test, p = 0.24, n =

64/115) and context A (Figure 3C), albeit with one intermediate co-

lor underrepresented (chi-squared test, p = 0.04, n = 60/115).

Also, there was no change in number of neurons selective for

target motion/color in each context (percentage of neurons in

context A versus context B, test for difference between two pro-

portions; Zar, 2010; upward tuned, p = 0.19, downward tuned,

p = 0.55; red tuned, p = 0.24; yellow tuned, p = 0.03). Note that
Cell Reports 36, 109470, August 3, 2021 3



Figure 2. Feature-selective neurons experience context-dependent gain modulation during the test period

(A) Time-resolved responses of amotion-direction selective neuron (# 1). Left panel: responses during context A (attend to upwardmotion of red dots cued). Right

panel: responses during context B (attend to downward motion of yellow dots). The top panels show dot-raster histograms depicting neuronal activity color-

coded with respect to the eight feature levels (i.e., motion directions). Each line is a trial, and each dot represents an action potential. The bottom shows the

corresponding, smoothed spike-density histograms for the same neuronal discharges. Note that the visual input during the test period is the same for both

contexts.

(B) Polar plot showing the directional tuning of the direction-selective neuron #1 to the eight motion directions during context A and context B.

(C) Time-resolved responses of a color-direction-selective neuron (# 2). Same layout as in (A).

(D) Color tuning of color-selective neuron #2 to the eight color hues during context A and context B. Error bars represent SEM across sessions.
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even though the difference for yellow-tuned neurons reaches sig-

nificance, the numbers are opposite from what would be ex-

pected with more neurons tuned to yellow in context A (14 versus

6 in context B), in which the red, upward-moving sample stimulus

was shown.

For a fraction of individual neurons (n = 418), we also

compared the motion direction tuning while the monkeys alter-

natingly performed the DCMT while passively viewing moving

random gray-dot patterns (passive task) that moved in eight

different directions. Of the 73 neurons that were selectively tuned

during the passive task (one-factorial ANOVA; p < 0.05), 45 neu-

rons were also selectively tuned during the DCMT. Figures 3E–

3H shows the responses of four exemplary motion-direction-se-

lective neurons that were recorded in both tasks. The tuning

profiles during the passive task matched the neurons’ profiles

during the attention-driven DCMT in both contexts. To quantify

the similarity between the tuning in the passive task and the

DCMT at the level of the neuron population, we calculated the

angular differences between the preferred direction in the pas-

sive task and the preferred direction in the context the neuron

was motion direction-selective in during the DCMT (Figure 3I).

If the tuning profiles in both tasks were similar, then we would
4 Cell Reports 36, 109470, August 3, 2021
expect small angular differences that lie around 0� difference.

Indeed, on average the angular differences, as captured by the

population direction vector, were distributed around 0� (v-test,

p < 0.0001, n = 71). This shows that motion-direction tuning of

PFC neurons during the DCMT (with attention) was comparable

to the neurons’ spontaneous tuning in the absence of attentional

selection.

Tuning sensitivity as a measure of gain modulation
Attentional gain modulation has been observed frequently in vi-

sual cortex (Lee and Maunsell, 2010; McAdams and Maunsell,

1999; Treue and Martı́nez Trujillo, 1999). We therefore explored

gain modulation by quantifying the difference in tuning sensitivity

of individual neurons between the two contexts.

The tuning sensitivities in context A and context B of all mo-

tion-direction-selective neurons are plotted in Figure 4A. Of

these 208 neurons, 15% (32/208) showed significantly higher

tuning sensitivity to one of the two contexts. During context A,

10 of 32 neurons exhibited higher tuning sensitivity, whereas in

context B, 22 of 32 neurons showed significantly higher tuning

sensitivity (p < 0.05, bootstrap analysis). An equivalent effect

was seen for color-selective neurons (Figure 4C). Here, 17% of



Figure 3. Neuronal tuning of feature-selective neurons to motion

direction or color

(A) Distribution of preferred directions during context A for neurons that were

selective for the direction of motion during context A or both contexts.

(B) Distribution of preferred directions during context B for neurons that were

selective for the direction of motion during context B or both contexts.
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neurons (19/115) showed significantly higher tuning sensitivity in

one of the two contexts. During context A, 8 of 19 neurons had a

higher tuning sensitivity, whereas 11 of 19 neurons exhibited

higher tuning sensitivity in context B (p < 0.05, bootstrap

analysis).

Not only single neurons but also the population as a whole

modulated tuning sensitivity in response to the monkeys’

attending to context A or B. For direction-selective neurons, the

distribution of area under the receiver operating characteristic

curve (AUROC) differences (context A minus context B) was

significantly broader than expected by chance (Figure 4B), indi-

cating an increase in selectivity at both sides of the distribution.

The distribution of AUROCdifferenceswas different froma normal

distribution (p = 5.33 10�28, single sample Kolmogorov-Smirnov

goodness-of-fit test) and instead bimodal (p = 0.033, Hartigans

dip test). Therefore, to test for significance, we used the interquar-

tile range (IQR) as a measure for the width of the distribution and

compared this to the IQRs of shuffled data (see STAR Methods).

None of the IQRs of the shuffled distribution were larger than

the IQR of the real data (randomization test, p = 0; real IQR,

1.75; shuffled distribution IQR minimum, 0.09; maximum, 0.148).

The real IQR was 6.52 standard deviations away from the mean

of the shuffled distribution, and thus, the distribution of AUROC

differences was significantly wider than expected under the null

hypothesis. Both effects (bimodality and the broadening of the

distribution) support the conclusion that the context modulated

the tuning sensitivity. The results were qualitatively similar if we

used the tuning vector length instead of the ROC value as mea-

sure for tuning sensitivity (randomization test, p = 0.02; real IQR,

0.63; shuffled distribution IQR minimum, 0.403; maximum,

0.667). A similar effect was seen for the population of color-selec-

tive neurons, for which the distribution of AUROC differences

(context A minus context B) was also bimodal (p = 0.026) and

significantly broader than expected by chance (Figure 4D)

(randomization test, p = 0; real IQR, 1.93; shuffled distribution

IQR minimum, 0.088; maximum, 0.172). Here, the IQR of the

real data was 5.34 standard deviations away from the mean of

the shuffled distribution. This difference in tuning sensitivity indi-

cates a gain modulation influenced by attentional demands for

both direction- and color-selective neurons. When we repeated

the analysis with a criterion of minimum seven trials per condi-

tions, all the results confirm our original conclusions: the distribu-

tion of AUROC differences was still significantly broader than

expectedunder the null hypothesis (direction: p = 0, n = 173; color:

p = 0, n = 88, randomization test). To test if the effect is only driven

by few selective neurons, we repeated the analysis without the
(C) Distribution of preferred colors during context A for neurons that were color

selective during context A or both contexts.

(D) Distribution of preferred colors during context B for neurons that were

color-selective during context B or both contexts.

(E–H) Directional tuning of four exemplary motion direction-selective neurons

that were recorded during both the passive-viewing task (PVT) and the DCMT.

The tuning profiles during the passive task (gray) match the tuning during the

attention-driven DCMT (red and yellow).

(I) Angular differences for all direction-selective neurons that were recorded

during both passive viewing and DCMT. The differences cluster around 0�,
indicating similar preferred directions in both tasks.

Cell Reports 36, 109470, August 3, 2021 5



Figure 4. Attentional modulation of tuning sensitivity

(A) Comparison of the direction-selective neurons’ tuning sensitivity (AUROC

values) in the context of sample A versus the context of sample B. Each dot

represents one neuron. Individual neurons with significantly higher AUROC

values in one context over the other are color coded (red dots for higher

sensitivity in context A; yellow dots for higher sensitivity in context B). Gray,

open circles indicated neurons that showed no significant difference in am-

plitudes between the two contexts.

(B) Histogram showing the significantly broader distribution of the neurons’

real AUROC differences compared to the distribution of differences derived

from shuffled AUROC values (blue line).

(C) Comparison of the color-selective neurons’ tuning sensitivity (AUROC

values) in the context of sample A versus the context of sample B. Same layout

as in (A).

(D) Histogram showing the significantly broader distribution of the color-se-

lective neurons’ real AUROC differences compared to the modeled distribu-

tion of differences derived from shuffled AUROC values (blue line). Same

layout as in (B).

(E) Distribution of AUROC differences for all direction-selective neurons with

higher sensitivity during context A. Each line represents a neuron’s AUROC

difference at its preferred direction.

(F) Distribution of AUROC differences for all direction-selective neurons with

higher sensitivity during context B. Same layout as in (E).

(G) Comparison of AUROC differences for direction-selective neurons. The

neurons are sorted by the distance of their preferred direction to the direction

of the sample stimulus. For neurons with a higher firing rate in context A (red

circles) the distance to sample A was taken, and for neurons with higher firing

rate in context B (yellow circles) the distance to sample B was taken. Grey line

represents average AUROC difference in 30�-bins.
(H) Distribution of AUROC differences for all color-selective neurons with

higher sensitivity during context A. Boxplots show average AUROC differ-

ences for neurons tuned to each of the eight presented color hues. Whiskers

extend to the most extreme data points not considered outliers.

(I) Distribution of AUROC differences for all color-selective neurons with higher

sensitivity during context B. Same layout as in (H),Whiskers extend to themost

extreme data points not considered outliers.

(J) Comparison of AUROC differences for color-selective neurons. Neurons

are sorted by the distance of their preferred color to the color of the sample

stimulus. Same layout as in (G).
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neurons that show a significant effect on the single-cell level

(without the red and yellowmarked neurons in Figure 4A). The dis-

tributions of AUROC differences for direction and color were still

significantly wider than the respective distributions under the

null hypothesis (direction: p = 0.006; color: p = 0.012). Additionally,

if we trained a support vector machine (SVM) to decode the

feature (direction or color) of a test stimulus and the context, it

was well able to do so (Figure S1). Given the fact that the visual

input was the same, the information the SVM used to differentiate

the context had to come from the gain modulation.

So far, changes of tuning sensitivity were explored irrespective

of the neurons’ motion-direction or color preferences. However,

according to results found in visual cortices, one might expect

that changes in tuning sensitivity, i.e., gain effects, are strongest

for neurons tuned to the currently attended feature. In a next

step, we therefore explored tuning sensitivity changes in relation

to the neurons’ preferred tuning. This was done separately for

neurons with higher sensitivity during context A and context B.

Figure 4E depicts the relation between direction tuning and

tuning sensitivity of individual neurons that showed higher tuning

sensitivities during context A (i.e., all neurons contributing to

data points below the unity line in Figure 4A). During context A,

the monkey is attending to the upward motion direction. Based
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on findings in visual cortex, one would expect that themajority of

neurons with higher tuning sensitivity in context A show an up-

ward tuning preference. The direction of the red lines in the polar

plot indicate the preferred motion direction, while the length of

each red line represents themagnitude of the difference in tuning

sensitivity (AUROC difference) between both contexts. In

contrast to predictions from visual cortex, neurons with higher

sensitivity during context A did not show a preference for upward

motion. Instead, they had preferred tuning directions distributed

across the whole circle (v-test for 90�, p = 0.07, n = 101). Quali-

tatively similar results were obtained only for neurons showing

significantly higher AUROC values in context A (neurons corre-

sponding to red data points in Figure 4A)

The same analysis was applied to individual neurons that

showed higher tuning sensitivities during context B (i.e., all neu-

rons contributing to data points above the unity line in Figure 4A).

For these neurons, onemight expect that the preferred tuning di-

rections should cluster around the downward direction, as the

monkey was attending to downward motion during context B.

However, as shown in Figure 4F tuning preferences were uni-

formly distributed around the circle (v-test for 270�, p = 0.82,

n = 107). Qualitatively similar results were obtained only for neu-

rons showing significantly higher AUROC values in context B

(neurons corresponding to yellow data points in Figure 4A).

According to the feature-similarity gain model, the gain is ex-

pected to change as a function of tuning. Neurons with a gain

effect are expected to show stronger gain modulation when

the attended feature matches their preferred tuning. Thus, for

neurons gain-modulated in context A, stronger gain modulation

is expected if their preferred tuning direction is upward

compared to downward. Vice versa, stronger gain modulation

is expected for neurons gain-modulated in context B if their

preferred tuning direction is downward.

To test this hypothesis, we compared the strength of gain

modulation in dependence of the distance of the sample to the

preferred direction (Figure 4G). If the effects followed the

feature-similarity gainmodel, thenwe could expect the strongest

effect at 0� distance, with effect sizes falling off with increasing

distance. In contrast, we found no difference across the dis-

tances (Kruskal-Wallis test, p = 0.85).

We computed ε
2 as measure of effect size (Tomczak and

Tomczak, 2014). ε2 was 0.03, which is considered small. These

results were confirmed when we repeated the analysis with a

minimum trial criterion of seven trials per condition. Although

the distribution of tuning vectors for cells with gain changes

(equivalent to Figures 4E–4I) did show a weak significance for

a preferred direction for cells modulated in context A (v-test for

90�, p = 0.043, n = 82), there was no significance for neurons

modulated in context B (v-test for 270�, p = 0.1, n = 49). Also,

there was no significant difference in the size of gain modulation

with distance from the preferred direction (Kruskal-Wallis test,

p = 0.17 ε
2 = 0.089). Therefore, surprisingly, our results do not

support a relation between the neurons’ tuning sensitivity as a

function of attention to context A (upward) or B (downward)

and the neurons’ direction tuning preferences. We find no evi-

dence that gain modulation during the monkeys’ attention to up-

ward and downward motion directions was dependent on the

neurons’ upward-versus-downward tuning preferences.
We also explored tuning sensitivity changes (i.e., gain modula-

tion) in relation to the neurons’ preferred tuning to colors. This re-

sulted in very similar findings. Figure 4H shows the relation be-

tween color tuning and tuning sensitivity modulation of

individual neurons that showed higher tuning sensitivities during

context A (i.e., all neurons contributing to data points below the

unity line in Figure 4C). Neurons with higher sensitivity during

context A did not show a preference for red but had preferred

tuning toward all colors (chi-squared test, p = 0.05, n = 52). Qual-

itatively similar results were obtained only for neurons showing

significantly higher AUROC values in context A (neurons corre-

sponding to red data points in Figure 4C). Similarly, neurons

with higher sensitivity during context B (Figure 4I) did not show

a preference for yellow but had preferred tuning toward all pre-

sented colors (chi-squared test, p = 0.12, n = 63). Similar indif-

ferent results were obtained for the strength of gain modulation.

The strength of gain modulation did not vary for different dis-

tances of the sample color to the preferred color of the neurons

(p = 0.1, ε
2 = 0.11, Figure 4J). Again, these results were

confirmed when repeating the analysis with a minimum of seven

trials per condition. There was no preference for tuning to the co-

lor red for cells modulated in context A (chi-squared test, p =

0.42, n = 39), nor was there a preference for tuning to the color

yellow for cells modulated in context B (p = 0.1, n = 49). In addi-

tion, the mean AUROC difference was not modulated by the dis-

tance from the preferred color (Kruskal-Wallis test, p = 0.51, ε2 =

0.03).

Thus, based on tuning-sensitivity differences (derived from

ROC analysis), we found no evidence that either the preferred

motion direction or the preferred color of the neurons had any

impact on attentional gain modulation.

Amplitudes of Gauss fits to direction tuning functions as
a measure of gain modulation
In order to determine the magnitude of attentional gain modula-

tion, Gauss functions are typically fitted to the tuning function of

neurons in the visual system (McAdams and Maunsell, 1999;

Treue andMartı́nez Trujillo, 1999). The amplitude of theGaussian

fits is then taken as quantitative parameter describing the

response modulation of the tuning functions. We therefore

explored amplitude differences of Gaussian functions fitted to

the PFC neurons’ tuning curves as a second parameter to

explore attentional gain modulation. For this analysis, only tuning

tomotion direction was investigated, because color-tuning func-

tions were severely truncated in color space.

The Gaussian fits described the tuning functions with decent

quality (Figure 5A). As for the previous analysis, we included neu-

rons that were direction selective in at least one context (see

STAR Methods, direction and color-selective neurons). The

black line in Figure 5A shows the average Gaussian fit to tuning

functions in the respective selective context (mean r2 goodness

of fit = 0.63 ± 0.01 SEM; n = 208). The gray line shows the

average Gaussian fit to the tuning function in the respective

nonselective context (mean r2 goodness of fit = 0.5 ± 0.02

SEM; n = 208). If neurons were direction selective in both con-

texts, the context with the higher average firing rate was defined

as the selective context, and the context with the lower average

firing rate was defined as the nonselective context
Cell Reports 36, 109470, August 3, 2021 7



Figure 5. Attentional modulation of tuning

amplitudes derived from Gauss fits

(A) Average Gauss fit to the tuning curves of all

motion-direction-selective neurons. The fits to

tuning functions in the selective context (black line)

and the complementary nonselective context (gray

line) are shown. Black and gray data points repre-

sent the average firing rates in the selective and

complementary nonselective contexts; error bars

represent SEM.

(B) Comparison of the direction-selective neuron

(n = 208) amplitudes in the context of sample A

against the context of sample B. Each dot repre-

sents one neuron. Individual neurons with signifi-

cantly higher amplitude in one context over the

other are color coded (red dots for higher sensitivity

in context A; yellow dots for higher sensitivity in

context B). Gray, open circles indicate neurons that

showed no significant difference in amplitudes

between the two contexts.

(C) Histogram showing the significantly broader

distribution of the neurons’ real firing rate amplitude

differences compared to the modeled distribution

of differences derived from shuffled amplitude

rates (blue line).

(D) Comparison of amplitude differences for direc-

tion-selective neurons. The neurons are sorted by

the distance of their preferred direction to the di-

rection of the sample stimulus. For neurons with a

higher firing rate in context A (red circles), the dis-

tance to sample A was taken, and for neurons with

higher firing rate in context B (yellow circles), the

distance to sample B was taken. Grey line repre-

sents absolute amplitude differences in 30�-bins.
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Figure 5B shows a comparison of the neurons’ amplitudes

derived from the Gaussian fits during context A and B. Some

of the neurons showed significantly higher amplitudes in one

context over the other. These neurons are color coded in Fig-

ure 5B (red: higher amplitude in context A, n = 12; yellow: higher

amplitude in context B, n = 23; bootstrap analysis, p < 0.05)

Not only single neurons but also the population as a whole

showed significant modulation of tuning amplitudes in response

to the monkeys’ attending to context A or B. The distribution of

the amplitude differences between context A and context B

was significantly broader than expected under the null hypothe-

sis based on shuffled amplitude differences (Figure 5C). None of

the IQRs of a shuffled distribution was larger than the IQR of the

real data (randomization test, p = 0; real IQR, 4.65; randomization

distribution IQR minimum, 2.17; maximum, 3.94). The IQR of the

real datawas 5.35 standard deviations away from themeanof the

randomization distribution. If the analysis was repeated with a

more stringent criterion (r-square value > 0.6 in at least one

context as goodness-of-fit measure for the Gaussian fits), then

the distribution of amplitude differences between context A and

context B was still significantly broader than expected under

the null hypothesis (p = 0.00014, F-stat = 1.48, n = 161, two-sam-

ple F-test). Similarly, when we repeated the analysis without the

neurons that showed a significant effect on the single-cell level,
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the distribution of amplitude differences was still significantly

wider that the distribution under the null hypothesis (p = 0.046).

Next, we explored whether attentional amplitude (gain)

changeswere related to the neurons’ preferredmotion directions

(as predicted by the feature-similarity hypothesis) and tested the

strength of gainmodulation across different distances of the neu-

rons’ preferred directions to the sample direction (Figure 5D).

Instead of feature sensitivity (used before), we now used ampli-

tude changes as a measure for gain modulation. The amplitude

differences were not different across the different distances

(p = 0.29, Kruskal-Wallis test, ε2 = 0.11). If tested with the stricter

criterion (r-square value > 0.6 in at least one context), again there

was no significant difference in amplitude size for the different

distances from the preferred direction (p = 0.38, Kruskal-Wallis

test, ε2 = 0.2). Thus, no evidence was found that gain changes

in the two attentional contexts were dependent on the neurons’

preferred tuning direction. None of the effects described above

changed if we used amplitudes normalized between 0 and 1 in

theGaussian fits. Thewidth of the distribution of amplitude differ-

ences was still significantly wider than the distribution under the

null hypothesis (p=0, randomization test; real IQR, 0.95; random-

ization distribution IQR minimum, 0.59; maximum, 0.90). and the

amplitude differences did not vary with distance of the sample

from the preferred direction (p = 0.73, Kruskal-Wallis-test).



Figure 6. Sample selectivity of neurons throughout the trial

(A) Time course of sample selectivity. Each row depicts the sample selectivity

(AUROC value, sample A versus sample B) for one neurons over time. Red

signifies selectivity for sample A, and blue signifies selectivity for sample B.

Neurons are sorted according to their selectivity in the delay period and la-

tency.
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Sample selectivity
Does sample selectivity during the sample and delay phase influ-

ence the observed gain effects during the test phase? To test if

the gain modulation effects simply reflect sample selectivity that

is already present beforehand in the trial (based on sustained

activation), we derived the AUROC value as a measure of sam-

ple-related selectivity over the time course of the trial (Figure 6).

Neurons are sorted according to their selectivity during the

delay. It shows that the selectivity of many neurons is highly dy-

namic and changes between the different time periods. Further-

more, we correlated AUROC values during the sample period

and delay period with the AUROC differences plotted in Figures

4B and 4D. We found no correlation for either gain modulations

of directional tuning curves (sample: r = 0.1, p = 0.15; delay: r =

0.03, p = 0.65) or gain modulations of color tuning curves (sam-

ple: r =�0.49, p = 0.6; delay: r = 0.13, p = 0.16). Consistently, we

found no significant correlation between sample selectivity in the

sample or the delay and gain modulations measured as ampli-

tude differences as plotted in Figure 5C (sample: r = 0.085, p =

0.22; delay: r = 0.09, p = 0.18). The gain modulation effects,

therefore, cannot be explained by preceding sustained sample

selectivity.

No tuning shifts of direction-selective PFC neurons
In visual cortex, the tuning preference of neurons sometimes

shifts under the influence of attention (David et al., 2008; Ibos

and Freedman, 2014). We therefore explored potential motion
direction shifts for motion-direction-selective PFC neurons. In

order to compare the neurons’ preferred directions between

context A and context B, we only used neurons that were mo-

tion-direction selective in both contexts (n = 60). Each individual

neuron’s directional tuning vector was calculated separately for

context A and context B trials (see STAR Methods). Next, we

calculated the angular differences between the reference direc-

tion of sample B (270�) and each neuron’s tuning vector sepa-

rately during context A and context B. If the context has no influ-

ence on the tuning direction, then, if plotted against each other

(Figure 7A), the neurons are expected to lie on the unity line. In

contrast, a shift toward the relevant context would result in

more data points lying under the unity line, whereas a shift

away from the attended context direction would result in data

points above the unity line. Only 15% of the neurons (9/60; Fig-

ure 7A) shifted their tuning direction between contexts (boot-

strap analysis, criterion p < 0.05). Of these, 6 neurons shifted

their tuning profile toward the currently relevant sample (blue

data points in Figure 7A), whereas 3 neurons shifted away (green

data points in Figure 7A). The majority of neurons maintained

their preferred direction as a function of the attended direction

(open data points in Figure 7A).

This maintenance of tuning was confirmed at the population

level. If tuning would systematically shift toward the attended di-

rection, the tuning distances of the data points relative to the

unity line in Figure 7A would increase. However, the distribution

of these distance values remained centered around the unity line

(distance value 0) (mean shift amplitude = +2.9� ± 3.3� [SEM],

p = 0.38, n = 60, one-sample t test) (Figure 7B).

We also explored potential tuning shifts in color-selective PFC

neurons. However, only a small fraction of neurons (8% [9/115])

were selective in both contexts. None of the neurons significantly

shifted their color preference (bootstrap analysis, criterion p <

0.05). Due to the low number of neurons, we did not test for

systematic shift on the population level. Taken together, these

results suggest that attention had a negligible effect on shifting

tuning preference of both motion-direction-selective and color-

selective PFC neurons.

DISCUSSION

In this study, we found that PFC neurons experienced strong gain

modulation in response to attentional demands. Surprisingly, and

in contrast to assumptions made by the feature-similarity gain

model established for attention effects in sensory cortices,

neuronal gain modulation was not bound to the tuning prefer-

ences of the neurons.

PFC as central source of top-down feature-based
attention
In order to investigate feature-basedattention effects at the site of

their origin, we recorded single-unit activity in the posterior prin-

cipal sulcus region of the lateral PFC. This brain region is consid-

ered to be a central source of top-down attentional modulation

(Everling et al., 2002; Rainer et al., 1998a). Our recording location

included a subregion of ventrolateral PFC anterior and ventral to

the arcuate sulcus termed the ventral pre-arcuate region (VPA).

Several findings identify the VPA as a key area for feature-based
Cell Reports 36, 109470, August 3, 2021 9



Figure 7. Exploration of potential direction tuning shifts in direction-

selective PFC neurons
(A) Distribution of angular differences between the direction of sample B (270�)
and each neuron’s direction vectors during context A and context B. The

angular distance in context A is shown on the x axis against the distance in

context B on the y axis. Blue points indicate neurons whose preferred direction

is significantly shifted toward the relevant direction, green points indicate

neurons whose preferred direction is significantly shifted away from the rele-

vant direction, and open circles indicate neurons that are not significantly

shifted.

(B) The distribution of angular distances to the unity line in (A) is shown as a

histogram. Green bars indicate shifted-away neurons, and blue bars indicate

shifted-toward neurons. The average shift amplitude in the population is

shown as a black vertical line.
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attention inmonkeys performing a feature-based search task (Bi-

chot et al., 2015, 2019). First, neurons in VPA showed feature-

based attentional modulation signals earlier than neurons in the

neighboring FEF on which visuo-spatial attention depends on

(Gregoriou et al., 2014; Moore and Armstrong, 2003; Moore and

Fallah, 2001). Second, in contrast to other brain areas simulta-

neously recorded from(suchas frontal eyefield [FEF], inferior tem-

poral cortex [IT], or ventral bank of the principal sulcus), only in

VPA neurons were selective to the memorized object throughout

anentire searchperiod (Bichot et al., 2015). ThePFC, inparticular,

is well known to exhibit object and feature selectivity in a variety of
10 Cell Reports 36, 109470, August 3, 2021
working memory tasks (Mendoza-Halliday et al., 2014; Rainer

et al., 1998b; Sarma et al., 2016; Zaksas and Pasternak, 2006).

The PFC, thus, seems to contain neuronal ‘‘target templates’’

kept in working memory for the searched-for object features of

a target. Third, inactivation of VPA not only impaired the animals’

ability to find the target (in the contralateral visual field) (Bichot

et al., 2015),but also eliminated or greatly reduced feature-based

attentionalmodulation in areaV4neurons in the samehemisphere

(Bichot et al., 2019). This implies that this part of the PFC is a

(direct or indirect) source of feature-based attention effects in

V4andmost likelyalsoother sensoryareas.Results like thesepro-

vide strong evidence for a prefrontal mechanism for feature-

based attention via top-down feedback to upstream sensory

brain areas. In the following, we discuss our findings concerning

several key effects of feature-based attention in PFC.

Feature-based attention causes no systematic shifts in
preferred tuning of PFC neurons
One effect we investigated were potential shifts in tuning prefer-

ence.We found no evidence for feature-based attention to cause

systematic tuning shifts of PFC neurons. In our study, attention

had a negligible effect on shifting tuning preference of either mo-

tion-direction-selective or color-selective PFC neurons. This

finding in PFC contrasts attentional effects reported for extrastri-

ate cortex. Attention has been shown to alter the tuning of visual

and parietal neurons; tuning often shifts to more closely match

the attended feature or location. For example, feature-based

attention shifted spatial frequency and orientation tuning of V4

neurons (David et al., 2008), and spatial attention shifted RF lo-

cations toward the attended location (Womelsdorf et al., 2006).

Similarly, a larger proportion of direction-selective neurons in

lateral intraparietal area (LIP) shifted their direction tuning profile

toward the direction of the relevant sample, whereas fewer neu-

rons shift their tuning away from the relevant direction (Ibos and

Freedman, 2014).

Such tuning shifts in extrastriate cortex (just as gain modula-

tion) are thought to be mediated by top-down feedback signals

most likely originating from the PFC (Compte and Wang, 2006).

However, irrespective of attentional demands, we find that PFC

neurons maintained their preferred tuning comparable to situa-

tions without attentional demands in a passive-viewing task.

Therefore, they seem to function as labeled lines that encode

input features consistently, regardless of the state of attention.

Feature attention causes strong gain modulation in PFC
neurons
We observed strong gain modulation of PFC neurons in

response to the monkeys attending to different sensory features

and parameters in the two behavioral contexts, A and B. Asmea-

sures of attentional gain modulation, we compared not only the

neurons’ tuning sensitivity but also the differences in tuning am-

plitudes derived from Gauss fits modeled to the neuronal tuning

functions. Both parameters showed that single neurons and the

population of feature-selective neurons experienced significant

gain modulation. Moreover, our population classifier analysis

showed that feature-selective neurons were strongly and sys-

tematically influenced by the contexts the monkeys were

attending to.
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Since we did not map the RFs of PFC neurons, it is conceiv-

able that some of the neurons had their RF outside of the visual

stimulation zone in our fixating monkeys and therefore have not

been stimulated. Thus, the overall frequency of tuned neurons

might be higher than encountered. However, neurons in the

frontal and parietal association cortices are known to be tuned

to attended features irrespective of whether the displays and

the RF of a neuron overlap or not (Freedman and Assad,

2009; Viswanathan and Nieder, 2020). If and to what extent

RFs influenced the proportion of tuned neurons is therefore

difficult to assess.

Previous work in extrastriate visual cortices found that feature-

based attention causes changes in the activity of feature-selective

neurons consistent with gainmodulation. Attending to a particular

direction increases the response gain of MT neurons tuned to the

attended direction (Chen et al., 2012; Martinez-Trujillo and Treue,

2004; Treue and Martı́nez Trujillo, 1999). Similarly, attending to

form (Bichot, 2005), color (Bichot, 2005), or orientation (McAdams

andMaunsell, 1999)modulates V4 neurons. Such gainmodulation

is thought to increase the neuronal signal-to-noise ratio of relevant

sensory features at the expense of irrelevant sensory features,

which ultimately leads to increasing task performance for at-

tended features (Cohen and Maunsell, 2009; Lee and Maunsell,

2009; McAdams and Maunsell, 1999; Reynolds and Heeger,

2009; Treue and Maunsell, 1996).

Feature-similarity gain modulation arises from feature-
independent top-down modulation in PFC
Attentional gain modulation in extrastriate cortex is thought to be

mediated by top-down feedback signals originating in the PFC

(Ardid et al., 2007; Bichot et al., 2015, 2019). In visual cortex,

the gain modulation affecting neurons shows a systematic

layout; only those neurons experience gain modulation whose

preferred feature parameter matches the currently attended

feature parameters (Maunsell and Treue, 2006). For example,

only neurons tuned to upward motion experience gain modula-

tion when the subject attends to upward motion. Gain modula-

tion was found to be progressively reduced if the distance

between a neuron’s preferred direction and the attended direc-

tion increased, with a suppression for large distances (Marti-

nez-Trujillo and Treue, 2004; Treue and Martı́nez Trujillo, 1999).

These effects in gain modulation as a function of the neurons’

preferred tuning have been captured by the feature-similarity

gain model (Bichot, 2005; Maunsell and Treue, 2006; Treue

and Martı́nez Trujillo, 1999).

It is tacitly assumed that feature similarity also holds for top-

down feedback signals (originating from PFC) that increase the

gain of neurons whose tuningmatches the target of attention (Ar-

did et al., 2007). However, we find this prediction not realized in

primate PFC neurons. Thus, we found no evidence that the

feature-similarity gain model accounts for PFC neurons that

constitute the origin of top-down attentional modulation. We

also found no correlation between sample selectivity in the delay

period and the observed gainmodulations in the test period. This

suggests that the gain modulation is not simply sample selec-

tivity spilling over from the delay period. However, it is conceiv-

able that gain modulation in PFC reflects some kind of mixed

selectivity (Mante et al., 2013; Rigotti et al., 2013), which could
be part of the mechanism of how attentional modulation is real-

ized in PFC and perhaps other higher-order areas.

This finding requiresadjustment of computationalmodels simu-

lating attentional processing along the cortical attentional pro-

cessing hierarchy, which so far assumed feature-similarity modu-

lation up to the origin of the top-down attentional signal (Ardid

et al., 2007).We suspect this observed type of feature dissimilarity

provides PFC with more degrees of freedom when instructing

more sensory brain areas that receive top-down projections dur-

ing attentional modulation. For instance, PFC not only needs to

enhance the signal-to-noise ratio of sensory neurons in accor-

dance with the attended features but also at the same time sup-

presses other neurons that encode currently irrelevant features.

Moreover, PFC not only directs attentional selection but also

needs to flexibly deal with a multitude of cognitive processes in

real-life situations, ranging from sensory processes (Jacob et al.,

2013;HageandNieder, 2015;Stalter et al., 2020) toworkingmem-

ory (Rainer et al., 1998b; Jacob and Nieder, 2014) and conceptual

decisions (Vallentin et al., 2012; Viswanathan and Nieder, 2015;

Ramirez-Cardenas et al., 2016; Wallis et al., 2001). Here as well,

the dissociation between preferred tuning of PFC neurons and

other task demands may constitute a computational advantage.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Experimental setup

B Surgical procedures

B Task and stimuli

B Extracellular recordings

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Behavioral data analysis

B Direction- and color-selective neurons

B Single-cell and population responses

B Direction tuning – polar plots

B Uniformity of circular data

B Comparison of direction tuning during DCMT and PVT

B Direction- and color tuning shifts

B Receiver operating characteristic analysis

B Context-dependent feature tuning sensitivity

B Gaussian tuning curve fit

B Gauss fits to motion direction tuning profiles

B Sample selectivity

B Multi-Class Support Vector (SVM) classification.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2021.109470.
Cell Reports 36, 109470, August 3, 2021 11

https://doi.org/10.1016/j.celrep.2021.109470
https://doi.org/10.1016/j.celrep.2021.109470


Article
ll

OPEN ACCESS
ACKNOWLEDGMENTS

This research was supported by DFG FOR 1847 grants NI 618/5-1 and NI 618/

5-2. We thank Katharina Brecht for helpful discussions.

AUTHOR CONTRIBUTIONS

M.S. and A.N. designed the experiments. M.S. recorded the data, and M.S.

and S.W. analyzed the data. M.S., S.W., and A.N. wrote the paper. A.N. super-

vised the study.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 29, 2020

Revised: May 31, 2021

Accepted: July 9, 2021

Published: August 3, 2021

REFERENCES

Ardid, S., Wang, X.-J., and Compte, A. (2007). An integrated microcircuit

model of attentional processing in the neocortex. J. Neurosci. 27, 8486–8495.

Baldauf, D., and Desimone, R. (2014). Neural Mechanisms of Object-Based

Attention. Science 344, 424–427.

Bichot, N.P. (2005). Parallel and Serial Neural Mechanisms for Visual Search in

Macaque Area V4. Science 308, 529–534.

Bichot, N.P., Heard, M.T., DeGennaro, E.M., and Desimone, R. (2015). A

Source for Feature-Based Attention in the Prefrontal Cortex. Neuron 88,

832–844.

Bichot, N.P., Xu, R., Ghadooshahy, A., Williams, M.L., and Desimone, R.

(2019). The role of prefrontal cortex in the control of feature attention in area

V4. Nat. Commun. 10, 5727.

Buschman, T.J., and Kastner, S. (2015). From Behavior to Neural Dynamics:

An Integrated Theory of Attention. Neuron 88, 127–144.

Buschman, T.J., and Miller, E.K. (2007). Top-Down Versus Bottom-Up Control

of Attention in the Prefrontal and Posterior Parietal Cortices. Science 315,

1860–1862.

Chang, C., and Lin, C. (2011). LIBSVM. ACM Trans. Intell. Syst. Technol. 2,

1–27.

Chen, X., Hoffmann, K.-P., Albright, T.D., and Thiele, A. (2012). Effect of

feature-selective attention on neuronal responses in macaque area MT.

J. Neurophysiol. 107, 1530–1543.

Cohen, M.R., and Maunsell, J.H.R. (2009). Attention improves performance

primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–

1600.

Compte, A., andWang, X.-J. (2006). Tuning curve shift by attentionmodulation

in cortical neurons: a computational study of its mechanisms. Cereb. Cortex

16, 761–778.

David, S.V., Hayden, B.Y., Mazer, J.A., and Gallant, J.L. (2008). Attention to

stimulus features shifts spectral tuning of V4 neurons during natural vision.

Neuron 59, 509–521.

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual

attention. Annu. Rev. Neurosci. 18, 193–222.

Everling, S., Tinsley, C.J., Gaffan, D., and Duncan, J. (2002). Filtering of neural

signals by focused attention in the monkey prefrontal cortex. Nat. Neurosci. 5,

671–676.

Freedman, D.J., and Assad, J.A. (2009). Distinct encoding of spatial and

nonspatial visual information in parietal cortex. J. Neurosci. 29, 5671–5680.

Gail, A., Klaes, C., andWestendorff, S. (2009). Implementation of spatial trans-

formation rules for goal-directed reaching via gain modulation in monkey pa-

rietal and premotor cortex. J. Neurosci. 29, 9490–9499.
12 Cell Reports 36, 109470, August 3, 2021
Gregoriou, G.G., Rossi, A.F., Ungerleider, L.G., and Desimone, R. (2014). Le-

sions of prefrontal cortex reduce attentional modulation of neuronal responses

and synchrony in V4. Nat. Neurosci. 17, 1003–1011.

Hage, S.R., and Nieder, A. (2015). Audio-vocal interaction in single neurons of

the monkey ventrolateral prefrontal cortex. J. Neurosci. 35, 7030–7040.

Hayden, B.Y., and Gallant, J.L. (2005). Time course of attention reveals

different mechanisms for spatial and feature-based attention in area V4.

Neuron 47, 637–643.

Ibos, G., and Freedman, D.J. (2014). Dynamic integration of task-relevant vi-

sual features in posterior parietal cortex. Neuron 83, 1468–1480.

Jacob, S.N., and Nieder, A. (2014). Complementary roles for primate frontal

and parietal cortex in guarding working memory from distractor stimuli.

Neuron 83, 226–237.

Jacob, S.N., Ott, T., and Nieder, A. (2013). Dopamine regulates two classes of

primate prefrontal neurons that represent sensory signals. J. Neurosci. 33,

13724–13734.

Lee, J., andMaunsell, J.H.R. (2009). A normalization model of attentional mod-

ulation of single unit responses. PLoS ONE 4, e4651.

Lee, J., and Maunsell, J.H.R. (2010). The effect of attention on neuronal re-

sponses to high and low contrast stimuli. J. Neurophysiol. 104, 960–971.

Liu, T. (2019). Feature-based attention: effects and control. Curr. Opin. Psy-

chol. 29, 187–192.

Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (2013). Context-

dependent computation by recurrent dynamics in prefrontal cortex. Nature

503, 78–84.

Martinez-Trujillo, J.C., and Treue, S. (2004). Feature-based attention increases

the selectivity of population responses in primate visual cortex. Curr. Biol. 14,

744–751.

Maunsell, J.H.R., and Treue, S. (2006). Feature-based attention in visual cor-

tex. Trends Neurosci. 29, 317–322.

McAdams, C.J., and Maunsell, J.H.R. (1999). Effects of attention on orienta-

tion-tuning functions of single neurons in macaque cortical area V4.

J. Neurosci. 19, 431–441.

McAdams, C.J., and Maunsell, J.H.R. (2000). Attention to both space and

feature modulates neuronal responses in macaque area V4. J. Neurophysiol.

83, 1751–1755.

Mendoza-Halliday, D., Torres, S., and Martinez-Trujillo, J.C. (2014). Sharp

emergence of feature-selective sustained activity along the dorsal visual

pathway. Nat. Neurosci. 17, 1255–1262.

Moore, T., and Armstrong, K.M. (2003). Selective gating of visual signals bymi-

crostimulation of frontal cortex. Nature 421, 370–373.

Moore, T., and Fallah, M. (2001). Control of eye movements and spatial atten-

tion. Proc. Natl. Acad. Sci. USA 98, 1273–1276.

Rainer, G., Asaad, W.F., and Miller, E.K. (1998a). Selective representation of

relevant information by neurons in the primate prefrontal cortex. Nature 393,

577–579.

Rainer, G., Asaad, W.F., and Miller, E.K. (1998b). Memory fields of neurons in

the primate prefrontal cortex. Proc. Natl. Acad. Sci. USA 95, 15008–15013.

Ramirez-Cardenas, A., Moskaleva, M., and Nieder, A. (2016). Neuronal Repre-

sentation of Numerosity Zero in the Primate Parieto-Frontal Number Network.

Curr. Biol. 26, 1285–1294.

Reynolds, J.H., and Heeger, D.J. (2009). The normalization model of attention.

Neuron 61, 168–185.

Rigotti, M., Barak, O., Warden, M.R., Wang, X.-J., Daw, N.D., Miller, E.K., and

Fusi, S. (2013). The importance of mixed selectivity in complex cognitive tasks.

Nature 497, 585–590.

Saalmann, Y.B., Pigarev, I.N., and Vidyasagar, T.R. (2007). Neural Mecha-

nisms of Visual Attention: How Top-Down FeedbackHighlights Relevant Loca-

tions. Science 316, 1612–1615.

Sarma, A., Masse, N.Y., Wang, X.-J., and Freedman, D.J. (2016). Task-specific

versus generalized mnemonic representations in parietal and prefrontal

cortices. Nat. Neurosci. 19, 143–149.

http://refhub.elsevier.com/S2211-1247(21)00893-7/sref1
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref1
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref2
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref2
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref3
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref3
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref4
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref4
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref4
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref5
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref5
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref5
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref6
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref6
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref7
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref7
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref7
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref8
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref8
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref9
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref9
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref9
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref10
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref10
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref10
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref11
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref11
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref11
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref12
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref12
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref12
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref13
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref13
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref14
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref14
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref14
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref15
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref15
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref16
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref16
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref16
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref17
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref17
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref17
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref18
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref18
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref19
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref19
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref19
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref20
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref20
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref21
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref21
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref21
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref22
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref22
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref22
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref23
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref23
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref24
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref24
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref25
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref25
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref26
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref26
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref26
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref27
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref27
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref27
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref28
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref28
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref29
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref29
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref29
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref30
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref30
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref30
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref31
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref31
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref31
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref32
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref32
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref33
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref33
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref34
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref34
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref34
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref35
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref35
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref36
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref36
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref36
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref37
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref37
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref38
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref38
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref38
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref39
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref39
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref39
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref40
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref40
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref40


Article
ll

OPEN ACCESS
Squire, R.F., Noudoost, B., Schafer, R.J., andMoore, T. (2013). Prefrontal con-

tributions to visual selective attention. Annu. Rev. Neurosci. 36, 451–466.

Stalter, M.,Westendorff, S., and Nieder, A. (2020). Dopamine Gates Visual Sig-

nals in Monkey Prefrontal Cortex Neurons. Cell Rep. 30, 164–172.e4.

Thiele, A., Delicato, L.S., Roberts, M.J., and Gieselmann, M. (2006). A novel

electrode-pipette design for simultaneous recording of extracellular spikes

and iontophoretic drug application in awake behaving monkeys. J. Neurosci.

Methods 158, 207–211.

Tomczak, M., and Tomczak, E. (2014). The need to report effect size estimates

revisited. An overview of some recommended measures of effect size. Trends

Sport Sci. 1, 19–25.

Treue, S., andMartı́nez Trujillo, J.C. (1999). Feature-based attention influences

motion processing gain in macaque visual cortex. Nature 399, 575–579.

Treue, S., and Maunsell, J.H.R. (1996). Attentional modulation of visual motion

processing in cortical areas MT and MST. Nature 382, 539–541.

Vallentin, D., Bongard, S., and Nieder, A. (2012). Numerical rule coding in the

prefrontal, premotor, and posterior parietal cortices of macaques. J. Neurosci.

32, 6621–6630.
Viswanathan, P., and Nieder, A. (2015). Differential impact of behavioral rele-

vance on quantity coding in primate frontal and parietal neurons. Curr. Biol.

25, 1259–1269.

Viswanathan, P., and Nieder, A. (2020). Spatial Neuronal Integration Supports

a Global Representation of Visual Numerosity in Primate Association Cortices.

J. Cogn. Neurosci. 32, 1184–1197.

Wallis, J.D., Anderson, K.C., and Miller, E.K. (2001). Single neurons in prefron-

tal cortex encode abstract rules. Nature 411, 953–956.

Womelsdorf, T., Anton-Erxleben, K., Pieper, F., and Treue, S. (2006). Dynamic

shifts of visual receptive fields in cortical area MT by spatial attention. Nat.

Neurosci. 9, 1156–1160.

Womelsdorf, T., Anton-Erxleben, K., and Treue, S. (2008). Receptive field shift

and shrinkage inmacaquemiddle temporal area through attentional gain mod-

ulation. J. Neurosci. 28, 8934–8944.

Zaksas, D., and Pasternak, T. (2006). Directional signals in the prefrontal cortex

and in area MT during a working memory for visual motion task. J. Neurosci.

26, 11726–11742.

Zar, J.H. (2010). Biostatistical analysis, Fifth Edition (Prentice-Hall: Pearson).
Cell Reports 36, 109470, August 3, 2021 13

http://refhub.elsevier.com/S2211-1247(21)00893-7/sref41
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref41
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref42
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref42
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref43
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref43
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref43
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref43
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref44
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref44
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref44
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref45
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref45
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref46
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref46
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref47
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref47
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref47
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref48
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref48
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref48
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref49
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref49
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref49
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref50
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref50
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref51
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref51
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref51
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref52
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref52
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref52
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref53
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref53
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref53
http://refhub.elsevier.com/S2211-1247(21)00893-7/sref54


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Macaca mulatta German Primate Centre, Göttingen https://www.dpz.eu/

Software and algorithms

NIMH Cortex National Institute of Mental Health c598; https://www.nimh.nih.gov/research/
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software-projects.shtml

MAP Data Acquisition System Plexon https://plexon.com/

MATLAB R2018a https://www.mathworks.com

MATLAB code MathWorks https://figshare.com/articles/software/

Matlab_files_for_Feature-based_

attention_processes_in_primate_

prefrontal_cortex_do_not_rely_on_

feature_similarity_/14899245

LIBSVM version 3.23 Chang and Lin, 2011 https://www.csie.ntu.edu.tw/�cjlin/libsvm/

Other

Dental Cement Heraeus Paladur, ISO 20795, CE 0197

Microdrives Modified NAN C-drive https://naninstruments.com/

Electrodes Animal Physiology Unit Custom fabrication

Luminance meter Konica Minolta LS100
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andreas

Nieder (andreas.nieder@uni-tuebingen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Analyzed data reported in this paper will be shared by the lead contact upon request.

All original code has been deposited at https://figshare.com/articles/software/Matlab_files_for_Feature-based_attention_

processes_in_primate_prefrontal_cortex_do_not_rely_on_feature_similarity_/14899245 and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

Any additional information required to re-analyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used two healthy 8-year-old, male rhesus monkeys (Macaca mulatta). The monkeys were obtained from the German Primate

Center (DPZ) in Göttingen. The animals were housed indoors in social groups. During the training and recording period the monkeys

were on a controlled feeding protocol. They received their daily amount of water as reward during the recording sessions. If necessary

additional water was given after the sessions. The animal’s body weight was measured daily during that time. Food was available ad

libitum in the group cage. All experimental procedures were in accordance with the guidelines for animal experimentation deter-

minded by the responsible authority, the Regierungspräsidium T€ubingen.
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Experimental setup
During the experiment themonkeys sat in a darkened operant conditioning chamber in front of a computer screen. Visual stimuli were

displayed on this monitor and the monkey had to respond to the stimuli by releasing a metal bar inside the primate chair. They

received fluid reward via a mouthpiece attached to the chair. During each trial, the monkey had to maintain eye fixation within

3.5� visual angle of the central fixation target (ISCAN). Display of visual stimuli and control of the animals’ behavior, as well as behav-

ioral data acquisition was done by CORTEX software (NIMH, Bethesda, MD). Neuronal data was recorded with a PLEXON system

(MAP box, Plexon Inc., Dallas, Texas).

Surgical procedures
We implanted two healthy, 8-year-old male rhesusmacaques (Macacamulatta) with titanium head posts and one recording chamber

each. The chamber was centered on the right hemisphere over the principal sulcus of the lateral PFC, anterior to the frontal eye field in

both monkeys. All surgical procedures were performed under aseptic conditions using general anesthesia. Chamber implantations

were guided by landmarks obtained through magnetic resonance imaging prior to the surgeries.

Task and stimuli
The monkeys were trained to match visually presented random dot patterns based on two conjunct visual features, namely the di-

rection of motion and the color of the dots, against one of two possible sample stimuli. The test stimuli varied in eight directions,

evenly spaced across the full 360�, and in eight color hues, ranging from red to yellow. Every combination of direction and color

was possible, resulting in a set of 64 unique stimuli. All eight directions and colors will be referred to as levels of their respective

feature. The first sample stimulus (A) consisted of red dots moving upward, the second sample stimulus (B) consisted of yellow

dots moving downward. The two sample stimuli were the same for each day and each session. The test stimuli were chosen from

a set of all possible combinations of directions and colors for both contexts. Therefore, non-matching stimuli belonged to one of

four categories of stimuli: (1) the test stimulus matched the sample stimulus only in color but not direction, (2) the test stimulus

matched the sample stimulus only in direction but not color, (3) the test stimulusmatched the sample stimulus that was not presented

in the current trial (e.g., sample stimulus B during context A trials and vice versa), or (4) the test stimulusmatched the sample stimulus

neither in color nor in direction. Stimuli form category 3 were presented three times as often as stimuli from the other categories to

prevent monkeys from simply ignoring the sample identity.

The monkeys initiated each trial by holding a metal bar and fixating on a central fixation target (fixation period). After 500 ms one of

the two samples appeared for 550 ms (sample period) setting the context and cueing the monkey about the two relevant features for

this trial. In the following delay period (550 ms) the screen was black, except for the fixation target, and the monkeys had to keep the

presented sample stimulus in memory. In the subsequent test period, the stimulus matching the presented sample in direction and

color was shown for 550ms in 25%of the trials (match trial). In the other 75%of the trials, one (25%), two (25%) or three (25%) of non-

match test stimuli were shown (550 ms each). One or two non-match test stimuli were followed by a matching test stimulus. Three

non-match test stimuli were never followed by a matching stimulus (catch trials). The inter stimulus time between all test stimuli was

150ms. Themonkeys were rewarded with fluid if they released the bar in response to a test stimulus matching in both visual features,

or for maintaining the bar for further 20 ms after the offset of the last non-matching stimulus in catch trials. All trials types were pre-

sented pseudo randomly.

Stimuli were circular patches of random dots 5� of visual angle (dva) in diameter. The overall dot density was 12 per dva2 with a

radius of 0.04 dva for each dot and theymovedwith 100%coherence at a speed of 4 dva/s. All stimuli were generated usingMATLAB

(The Mathworks). Colors were generated in the LAB color space (1976 CIE L*a*b) and all colors were controlled for iso-luminance

under experimental conditions, using a LS-100 luminance meter (Konica Minolta).

Extracellular recordings
On each session, up to three custom-made, tungsten-in-glass electrodes (Thiele et al., 2006) with two flanking barrels were lowered

transdurally into the brain using a modified electrical drive (NAN Drive). We randomly recorded single neurons and made no attempt

to preselect neurons. Signal acquisition, filtering, amplification and digitalization were accomplished with the MAP system (Plexon).

Waveform separation was performed offline (Offline Sorter; Plexon). Electrode impedances were measured after the recordings and

ranged between 0.5 and 3.5 MU (measured at 500 Hz; Omega Tip Z; World Precision Instruments).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was performed using the R2019a release of MATLAB software (The MathWorks). In order to eliminate hand move-

ment related activity, we excluded the responses to matching stimuli and only analyzed responses to non-matching stimuli. For pop-

ulation analysis the neuronal data weremerged for bothmonkeys, as theywere similar. We used the same timewindow for all analysis

as described in the section ‘Direction- and color-selective neurons’.
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The following statistical tests were used as appropriate for the data: a Kruskal-Wallis test was used to define feature selective neu-

rons. A Rayleigh test was to test for circular uniformity in the distribution of tuning vectors. A v-test was used in the instances in which

the distribution of tuning vector directionswas tested for an orientation into a specific direction against uniformity. A one-sample t test

was used to test if the distribution of tuning vector shift angles was significantly different from zero. We used randomization tests to

test if a distribution of gain changeswas broader than expected under the null-hypothesis.We created a respective distribution under

the null-hypothesis by randomly assigning trials to one of the two possible contexts. To test if sensitivity differences were different

between two different groups of neurons, we used a Mann-Whitney U-test.

Data are presented as mean ± standard error of the mean (SEM) unless indicated otherwise. p < 0.05 was considered to be sta-

tistically significant. For all analyses the exact statistical test including p values, dispersion and precision measures are given in the

result section.

Behavioral data analysis
The false alarm rate in response to every possible test stimulus (64 combinations: 8 direction x 8 colors) was analyzed. False alarm

rate (FAR) was determined as the number of erroneous bar releases (false alarms; FA) to non-matching test stimuli divided by the sum

of false alarms plus correct bar maintenance (correct rejections; CR): FAR = FA/(FA+CR).

Direction- and color-selective neurons
We were interested in how the context, i.e., attention to a currently relevant feature, affected the feature tuning of PFC neurons.

Importantly, the visual input during the analyzed test-period was identical for both contexts. Any activity differences can be explained

only by the fact that the monkey was attending to the currently relevant feature. Neurons were included in the analysis if they were

recorded with at least 4 correct trials per direction and color. Similar results were obtained if we used aminimum of 7 correct trials per

condition (data not shown). In total we recorded 489 neurons that fulfilled this criterion. By visual inspection, many neurons differed in

their time course of selectivity to the stimulus features direction and color. Additionally, selectivity depended on the currently relevant

context. Therefore, for each context separately, a sliding window Kruskal-Wallis test was performed on the firing rates in the test

period from 0.1 s to 0.7 s after test stimulus onset (bin width 150 ms, shifted in steps of 5 ms). In each context, onset and offset

of selectivity were defined as the time from the first to the last significant window (p < 0.05), but only if at least 10 consecutive

bins were significant. If onset and offset of selectivity could be determined only in one context, the same time window was taken

for the other context. In cases where onset and offset of selectivity could be determined in both contexts, the window started at

the earliest onset and ended at the latest offset from both contexts. All further analysis concerning the test period used the average

firing rate in the thus defined time window, which was tailored to best capture each neurons stimulus-feature-selectivity.

A neuron was counted as direction or color selective, if the average firing rates in the above defined time window were significantly

different for the analyzed feature in at least one context (p < 0.05) using a Kruskal-Wallis test. None of the reported results depended

on the exact choice of trials or time window to analyze. Similar results were achieved using a different set of parameters.

Single-cell and population responses
For single-cell responses of example neurons, spike-density functions were generated, i.e., individual trials were parsed in 10ms bins

and spikes convoluted with a Gaussian function with a width of sigma = 75ms. Activity was then averaged for every 10ms bin over all

trials of a given stimulus dimension.

Direction tuning – polar plots
The selectivity profile and selectivity strength of all direction selective single neurons was assessed by computing a directional vector

separately on sample A and B trials using Equation 1:
8>>>><
>>>>:

X =
X8

i = 1

FRðiÞ � cosðdirectionðiÞÞ

Y =
X8

i = 1

FRðiÞ � sinðdirectionðiÞÞ
Equation 1

Here, FR(i) is the neurons’ firing rate to the ith direction, yielding the Cartesian coordinates [0 X] and [0 Y] of the directional vector.

Uniformity of circular data
To test whether the preferred directions of our recorded motion direction-selective population were uniformly distributed, we used

circular statistics (Rayleigh test) as conventional statistics are not suited for circular data.

Comparison of direction tuning during DCMT and PVT
For a subset of neurons (n = 418), we also recorded activity during a sensory-driven passive viewing task (PVT). PVT trials were

randomly interleaved with trials of the delayed conjunction matching task (DCMT). The monkeys watched a series of visual random

dot patterns moving in the center of the screen. Stimuli were circular patches of random dots 5� of visual angle (dva) in diameter. The
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overall dot density was 12 per dva2 with a radius of 0.04 dva for each dot and theymovedwith 100%coherence at a speed of 4 dva/s.

The movement of the dots varied in eight directions, spaced evenly across the full 360�. The color of all dots was a light gray. A trial

was initiated by holding a metal bar and maintaining gaze on a central fixation target (fixation period). After 300 ms, a series of eight

stimuli of pseudo-randomized motion directions was presented in sequence. At the end of each trial, a fluid reward was delivered if

the monkey maintained holding the bar and maintained fixation throughout the stimulus presentation sequence. Each stimulus was

presented for 300 ms and contained dot patterns moving in one of eight directions. Within one trial every possible direction was pre-

sented only once and the time between each stimulus was 100 ms.

Neurons were included in the analysis of the PVT if they were recorded with at least 10 trials per direction. We performed a Kruskal-

Wallis test on the firing rates during stimulus presentation (0.18 s to 0.48 s after stimulus onset). A neuron was counted as direction-

selective during the PVT if the p value of the Kruskall-Wallis test was significant (p < 0.05). In total we found 73 neurons to be selective

for the direction-ofmotion during the PVT. From this pool of neurons, 45were alsomotion direction-selective during theDCMT. These

neurons were used for the comparison of motion direction tuning during the DCMT and PVT. None of the reported results depended

on the exact choice of time window for the PVT analysis. Similar results were obtained using different parameters.

Tuning vectors for PVT data were calculated as described for the DCMT data. By visual inspection, the tuning profiles of the

sensory PVT and the attentional DCMT task were very similar. To test, that the neuronal tuning profile is indeed similar in both

tasks, we calculated the angular differences of the tuning vectors during the PVT and the DCMT. Under the null hypothesis the

differences between the tuning vector in the PVT and the DCMT should be uniformly distributed around the circle. The alterna-

tive hypothesis is that the angle differences cluster around 0�. We tested this, using a v-test for circular data at an alpha of 0.05.

Direction- and color tuning shifts
For the population of neurons that were motion direction-selective during both contexts during the DCMT (n = 60), we normalized

the firing rates to the neurons maximum in the test period. For each neuron we shuffled firing rates between sample A and B,

within their respective direction and with replacement (analysis was analog to Ibos and Freedman (2014)). This was repeated

1000 times and for each repetition we calculated the preferred directions for both contexts individually according to Equation

1, yielding 1000 values of PrefDIR-A-shuffle and PrefDIR-B-shuffle. The preferred directions of shuffled data were then compared

to direction of sample B (270�), i.e., DIR-BtoPrefDIR-A-shuffle and DIR-BtoPrefDIR-B-shuffle. We calculated all the possible

combinatory differences between the 1000 DIR-BtoPrefDIR-A-shuffle and DIRBtoPrefDIR-B-shuffle values, yielding 1000000 dif-

ferences. In this distribution, negative values mean that PrefDIR-A-shuffle is closer to the direction of sample B then PrefDIR-B-

shuffle. We counted a neurons preferred direction as significantly shifted toward the relevant direction of the current context, if at

least 97.5% (p % 0.05) of these differences were positive. If at least 97.5% (p % 0.05) of the differences were negative, we

counted the preferred direction as significantly shifted away from the relevant direction. To see if the context dependent shifts

exist also on the level of the population of these direction selective neurons, we calculated the distance to the bisection line

for each neuron individually. A one-sample t test was used to test if the distribution of distances to the bisection line was signif-

icantly shifted from zero.

To analyze tuning shifts for the color data on the single cell level, we performed a bootstrap analysis similar to the direction data,

however, our linear color space prevented us from using vector-based analyses of color-tuning shifts. For each neuron we shuffled

firing rates between sample A and B, within their respective color and with replacement. This was repeated 1000 times and for each

repetition we calculated the index of preferred colors for both contexts individually, yielding 1000 values of PrefCOL-A-shuffle and

PrefCOL-B-shuffle (e.g., for a preferred color red the index was 1 and increased by one with each intermediate color. The index for a

preferred color yellow was 8).

The preferred colors of shuffled data were then compared to the color index of sample B (index 8), i.e., COL-BtoPrefCOL-A-shuffle

and COL-BtoPrefCOL-B-shuffle. We calculated all the possible combinatory differences between the 1000 COL-BtoPrefCOL-A-

shuffle and COL-BtoPrefCOL-B-shuffle values, yielding 1000000 differences. In this distribution, negative values reveal that Pre-

fCOL-A-shuffle is closer to the color of sample B then PrefCOL-B-shuffle. We counted a neurons preferred color as significantly

shifted toward the relevant color of the current context, if at least 97.5% (p % 0.05) of these differences were positive. If at least

97.5% (p% 0.05) of the differences were negative, we counted to preferred color as significantly shifted away from the relevant color.

Receiver operating characteristic analysis
Tuning sensitivity for both stimulus features (direction and color) was quantified using receiver operating characteristic (ROC) anal-

ysis, derived from signal detection theory. For each neuron, each context and each feature separately, the true positive rate

(discharge rate in response to the preferred feature level; direction or color, respectively) and false positive rate (discharge rate in

response to the least-preferred feature level) were calculated in order to generate the ROC curve. Then the area under the ROC curve

(AUROC), which is a nonparametricmeasure of the discriminability of two distributions, was calculated. It denotes the probability with

which an ideal observer can tell apart ameaningful signal from a noisy background. Values of 0.5 indicate no separation, and values of

1 signal perfect discriminability. The AUROC is a good indicator of signal quality as it takes into account both the difference between

distributions means as well as their width.
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Context-dependent feature tuning sensitivity
To explore the influence of feature-based attention on the tuning sensitivity of the population of direction and color selective neurons,

the difference of the AUROCs (see above) for both contexts (AUROC-A-trials – AUROC-B-trials) was calculated for each neuron indi-

vidually. Values of zero indicate no difference in the tuning sensitivity between the two contexts. A value close to�0.5 means that the

neuron has a high sensitivity during context B and low sensitivity during context A. A value of 0.5 indicates the reverse. We found

many neurons that differ in sensitivity between contexts. These effects are, as expected, observed with equal frequencies with pref-

erences for context A and preferences for context B. Therefore, we have effects of AUROC differences on both tails of the distribu-

tion. Consequently, if testing for a population effect, it is not possible to test for a shift of the mean of the distribution away from zero.

However, if there are effects to both sides, the hypothesis is that the real distribution is wider than a distribution under the null-hy-

pothesis of no difference between context A and B. We created this Null-distribution by randomly relabelling trials as A- or B-trials,

while keeping direction- or color labels intact. We calculated 1000 permutations of AUROC-A-trials and AUROC-B-trials. The differ-

ences of the shuffled AUROC values were taken to estimate the null distribution of AUROC differences (AUROC-shuffle-A – AUROC-

shuffle-B with NShuffle = NNeurons x 1000). If feature-based attention has no influence on the population sensitivity in the two contexts,

the distribution of real AUROC differences and the null distribution should be equally wide. In contrast, if, as expected, feature-based

attention exerts effects in both contexts, the distribution of the real data should be wider than the null distribution (Gail et al., 2009).

We used the interquartile range to calculate the width of the distribution. We did this for the distribution of real data and each of the

1000 distributions of shuffled data. If the interquartile range of the real data is outside the 95th percentile (i.e., smaller than the 2.5th

percentile or larger than the 97th percentile) of the distribution of interquartile ranges for the shuffled data, the effect was considered

significant. The p value is given as the percentage of shuffled values that are larger/smaller than the real interquartile range. Addition-

ally, we used the shuffle distribution to detect single neurons that were significantly sensitivity modulated by the context of sample A

or B. We tested for each neuron if its real AUROC difference between A and B trials was outside of 95% of its null-distribution of shuf-

fled AUROC differences (p < 0.05, two-sided).

During feature-based attention according to the feature-similarity-gain model (Treue and Martı́nez Trujillo, 1999), neurons that are

tuned to the currently attended direction are gain modulated in visual area MT. The size of the gain modulation decreases with

increasing distance of the preferred feature to the attended feature. Therefore, the hypothesis is that in PFC, the potential source

for the top-down attention signal, a similar mechanism is in place that produces a gain specifically for neurons with tuning matching

the currently attended feature. Therefore, we plotted the size of the gain effects in dependence of the distance of the preferred color/

direction to the sample color/direction. For direction, we then separated these distances into bins of 30� ranging from�180� to 180�.
For direction within each bin, and for color at each distance, we computed themean size of the respective gain effect and tested with

a Kruskal-Wallis test at an alpha level of 0.05 for differences between the different distances.

Gaussian tuning curve fit
The activity of eachmotion direction-selective neuron in the DCMTwas fittedwith aGaussian function to analyze the individual tuning

curve, in each context separately.

fðxÞ = a � e
�

�
x�b
c

�2

+d Equation 2

We fitted three parameters: amplitude (a), width (c) and offset (d); see Equation 3. MATLABs ‘nonlinearleastsquares’ algorithm was

used to find optimal values for each neuron. Before fitting, the x-values were shifted in such a way that the position of the maximum

firing rate (b) was fixed in the center of the curve to deal with the circularity of the data. We used the amplitude values of these fits for

the analysis of context dependent gain modulation. We used all such generated fits for further analysis. However, our results do not

change qualitatively if we apply a minimum r2-value of 0.6 for either one of the contexts or both contexts as quality criterion (data not

shown).

To generate population tuning curves in Figure 5D, all responses were aligned to the preferred direction and averaged over all neu-

rons for the context the neurons weremotion direction-selective in or the respective other context, separately. The average response

was then used to fit the population tuning curve using the same fitting procedure as described before. For each direction we calcu-

lated the error across neurons as standard error of the mean (SEM).

Gauss fits to motion direction tuning profiles
To test whether feature-based attention modulated the amplitude in the tuning profiles of direction-selective neurons on the popu-

lation level, we first fitted each neurons response with a Gaussian function (see paragraph ‘‘Gaussian tuning curve fit’’; above), for

each context separately. We then used the amplitude value from our Gaussian fit in each context, which corresponds to the differ-

ence between the peak and the tail of the fitted function, to calculate the difference in the amplitudes between the two contexts for

each neuron individually (Amplitude-A-trials – Amplitude-B-trials). By randomly relabelling trials as A- or B-trials, while keeping direc-

tion labels intact, we calculated 1000 permutations of Amplitude-A-trials and Amplitude-B-trials. The differences of the shuffled

amplitude values were taken to estimate the null distribution of amplitude differences (Amplitude-shuffle-A – Amplitude-shuffle-B

with NShuffle = NNeurons x 1000).
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As described for the sensitivity modulation, we expected feature-based attention to exert amplitude-effects in both contexts.

Therefore, we tested with an F-test, if the distribution of real amplitude differences was wider than the null distribution (p < 0.05,

two- sided). For detecting single neurons that were significantly context modulated in feature coding strength, we tested for each

neuron if its real amplitude difference between A and B trials was outside the 95% confidence interval of the distribution of shuffled

amplitude differences.

To analyze if the amplitude differences in motion-direction selective neurons differed between the group of ‘matching-feature’-

encoding and non-matching feature’- encoding neurons, we performed the same analysis as described for the sensitivity analysis

but used the amplitude differences (see last section in the paragraph ‘‘Context-dependent stimulus feature tuning sensitivity’’ above).

Sample selectivity
To analyze sample selectivity we computed a sliding windowROC analysis between the two sample conditions (context A and B). For

each neuronwe computed the AUROC value in a 150mswindow at 5ms time steps starting 0.5 s before sample onset and continuing

until 3.3 s after sample onset. To test how sample selectivity before test onset correlated with gain effects during the test phase we

correlated (Pearson correlation) sample selectivity measured as AUROC value in the sample period (0.1 s to 0.65 s after sample

onset) and in the delay period (0.65 s to 1.1 s after sample onset) to the gain effects analyzed in the test period, measured as AUROC

differences (Figure 4) and as amplitude differences (Figure 5).

Multi-Class Support Vector (SVM) classification.
To assess the amount of feature information contained in the populations of direction- and color-selective neurons and to evaluate

how this information depends on the current context, we trained a multi-class SVM classifier (Chang and Lin, 2011) (LIBSVM version

3.23). We used a linear SVM-kernel with default parameter settings and applied ‘one-versus-one’ classification to distinguish our

sixteen classes (eight feature levels in two contexts). A separate classifier was built for the population of direction- and color-selective

neurons using 7 trials per feature level and neuron (n = 180 motion direction-selective and n = 92 color-selective neurons). For neu-

rons with more than 7 trials we randomly sampled without replacement 7 trials. We normalized all firing rates by z-scoring and used

leave-one-out cross-validation. In the confusion matrix themain diagonal contains correct labeling of the classifier. This process was

repeated 100 times and the average decoding performance was taken to be the mean of all runs.

To assess the influence of context, we shuffled the context labels of the firing rates while keeping the feature-level labels intact.

Using these shuffled data, we trained and tested a new classifier for each population of direction- and color-selective neurons.

For training and testing of the multi-class SVM we used the exact same procedure as described in the previous paragraph. If the

neuronal firing rates were unaffected by the context, the main diagonal would be less pronounced and two secondary diagonals

would appear. These secondary diagonals would then indicate the misclassification of a given direction with that same direction

of the other context (refer to Figure S1).
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