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2Lead contact

*Correspondence: andreas.nieder@uni-tuebingen.de

https://doi.org/10.1016/j.cub.2023.04.013
SUMMARY
The ability to group abstract continuousmagnitudes intomeaningful categories is cognitively demanding but
key to intelligent behavior. To explore its neuronal mechanisms, we trained carrion crows to categorize lines
of variable lengths into arbitrary ‘‘short’’ and ‘‘long’’ categories. Single-neuron activity in the nidopallium cau-
dolaterale (NCL) of behaving crows reflected the learned length categories of visual stimuli. The length cat-
egories could be reliably decoded from neuronal population activity to predict the crows’ conceptual deci-
sions. NCL activity changed with learning when a crow was retrained with the same stimuli assigned to
more categories with new boundaries (‘‘short’’, ‘‘medium,’’ and ‘‘long’’). Categorical neuronal representations
emerged dynamically so that sensory length information at the beginning of the trial was transformed into
behaviorally relevant categorical representations shortly before the crows’ decision making. Our data
showmalleable categorization capabilities for abstract spatial magnitudesmediated by the flexible networks
of the crow NCL.
INTRODUCTION

Perceptual categorization enables animals to group stimuli into

behaviorally meaningful classes that can easily be generalized

to new circumstances.1 Variable stimuli are distinguished as

belonging to the same category (within category) or to different

categories (across category). Even if the sensory features of to

be categorized stimuli change continuously, the classification

judgment from one category to another is sudden, thus resulting

in an abrupt category boundary.2

In some animals and domains, the categorical perception of

stimuli can be largely innate. For example, female túngara frogs

respond categorically to complex male mating calls,3 crickets

divide sound frequency categorically into attractive and repul-

sive sounds,4 and lactating female house mice perceive the ul-

trasonic calls of their pups categorically.5 In many other circum-

stances, however, perceptual categories need to be learned by

trial-and-error based on behavioral feedback.6 For instance,

young vervet monkeys need to learn to identify the predator

category alarm calls,7 and songbirds learned to recognize new

alarms by association with known alarms.8 Evidently, the capa-

bility to categorize stimuli offers survival and reproduction bene-

fits and therefore is widespread across the animal kingdom.9

Experience-dependent categorization is frequent in cognitively

flexible vertebrates. It can be found in mammals10,11 and birds

such as pigeons12–19 and crows.20–24 Similar to the hierarchical

processing pathway in the primate brain,25 behaviorally relevant

stimulus features supporting categorical neuronal responses

seem to be extracted gradually along the two major visual fore-

brain pathways of birds26: the thalamofugal pathway (homolog

to the mammalian geniculocortical pathway) and the tectofugal
Curre
pathway (thought to be analogous to themammalian extrastriate

cortex27). In the avian telencephalon, rudimentary category rep-

resentations emerge first via the thalamofugal pathway in the tha-

lamorecipient structures of the visualWulst and via the tectofugal

pathway in the entopallium and the overlaying intercalated nido-

pallium (NI) and mesopallium ventrolaterale (MVL) layers.28,29

From these layers, highly integrated visual information still lacking

sufficient feature invariance is forwarded to the dominant asso-

ciative cognitive control center of the avian brain, the nidopallium

caudolaterale (NCL). Based on a variety of anatomical and func-

tional criteria, the NCL is thought to be an avian equivalent of the

primate prefrontal cortex (PFC),30–36 a mammalian brain area of

great importance in categorization.11,37–40

Neuronal responses that establish behaviorally relevant condi-

tional stimulus-response contingencies have been reported

several times in the avian NCL.18,41–44 Clear categorical neuronal

responses were observed in the realm of numerical quantity.

NCL neurons are tuned to the number of items in visual displays,

both in numerically trained crows45–48 but also in numerically

naive crows49 and untrained 10-day-old domestic chicks.50

The latter findings suggest that categorical responses to number

emerge largely spontaneously based onmechanisms inherent to

the visual system.51,52 How learned magnitude categories

emerge in the avian brain and the neuronal mechanisms under-

lying them is currently unknown.

Here, we explored crows’ behavioral and neuronal representa-

tion of learned magnitude categories. We tested three assump-

tions: first, we hypothesized that neurons in the corvid NCL rep-

resented learned and abstract spatial categories in a stimulus

feature invariant and behaviorally relevant manner. Therefore,

we trained crows in a delayed match-to-category task to group
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the lengths of parameter-controlled lines into the categories

‘‘short’’ vs. ‘‘long’’ by relying on learned and arbitrary rules while

recording from neurons of the NCL during performance. Second,

we assumed that NCL neurons can flexibly adapt to new cate-

gory boundaries if categorization rules change. Therefore, we re-

trained one crow with the line lengths reassigned to three new

categories short, medium, and long. Third, we predicted that

crow NCL neurons, despite a distinct neuroanatomy, exhibit a

similar code for categories as PFC neurons in monkeys. Similar-

ities of crow NCL data with monkey PFC findings would lend

support to the notion of a superior physiological solution to the

same categorization challenge in convergently evolved telence-

phalic executive brain regions.

RESULTS

Two crows were trained in a delayed match-to-category task to

categorize line stimuli according to their length into two groups

(short and long categories). Six different line lengths were used

that were assigned to the two length categories short (S1, S2,

and S3) vs. long (L1, L2, and L3) (Figure 1B). To ensure that the

crows categorized length rather than the area or thickness of

the lines, we used two stimulus protocols (‘‘standard,’’ where

line thickness varied pseudo-randomly across line lengths, and

‘‘control,’’ where the area of each line was constant) in each

session.

Behavior
Both crows were able to memorize and match the sample line

length to the category-matching length in the test phase. The

crows performed proficiently above the 50% chance level

(crow 1: 87.2% ± 0.5% SEM, n = 52 sessions; crow 2:

87.7% ± 0.7% SEM, n = 55 sessions) in each session (all bino-

mial tests, p < 0.001). The behavioral performance was a step

function with similar responses for stimuli of the same category

and a sharp change across the category boundary (Figures 1C

and 1D). Both crows reliably categorized each of the six individ-

ual sample stimuli to the appropriate length category, irrespec-

tive of whether standard or control protocols were shown

(Figures 1E and 1F).

As expected for parameterized length magnitude, both crows

categorized the lengths most distant from the category bound-

ary (S1 and L3, respectively) most proficient and the lengths

near the category transition (S3 and L1, respectively) least profi-

cient, resulting in performance differences of between 2.6% and

19.7% between the most distant and the closest line length to

the category boundary (S1 vs. S3 and L3 vs. L1, respectively)

(Kruskal-Wallis tests, p < 0.001; except for short stimuli in match

conditions for crow 1 (p = 0.16), Figure 1C, left). However, this

within-category performance drop was mild compared with the

substantial across-category (short vs. long) difference of, on

average, 76.9% for crow 1 and 77.3% for crow 2 (Kruskal-

Wallis tests, p < 0.001 for both short vs. long and long vs. short

categorizations in both crows).

Both crows were slightly better in discriminating the control

protocol compared with the standard protocol (paired t test,

p < 0.001, Figures 1E and 1F). The mean performance of

crow 1 with standard and control stimuli was 84.9% and

89.8%, respectively. Crow 2 had a mean performance of
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84.0% with standard stimuli and 92.1% with control stimuli.

However, the performance of both crows in each session was

clearly above the 50% chance level with either stimulus set (all

binomial tests for individual sessions and both crows p < 0.01).

Neuronal data
We recorded the single-cell activity of 449 NCL neurons (crow 1,

195 neurons; crow 2, 254 neurons) while the crows performed

the length categorization task. Overall, 134 neurons (29.8%

overall; 43% in crow 1 and 20% in crow 2) were found to be cate-

gory selective in specific trial intervals and showed firing rate dif-

ferences between the short vs. long categories (two-factor

ANOVA, p < 0.01), but no differences within the two categories

(Kruskal-Wallis tests, pR 0.05). In the sample phase, 65 neurons

were category selective (Figure 2A), whereas 86 neurons were

category selective during the delay phase (Figure 2B). The re-

sponses of four category-selective example neurons are shown

in Figures 2C–2F. The neurons in Figures 2C and 2D increased

their firing rates selectively to the line stimuli of the long category

in the sample phase and during the delay, respectively. The other

two example neurons responded selectively to category short in

the early (Figure 2E) and later delay (Figure 2F), respectively.

The preferred category of a selective neuron was defined as

the one eliciting the highest firing rate within the selective time

window. In the sample phase, slightly more neurons preferred

the short category (n = 41/65, binomial test, p = 0.046): in the

delay, a similar number of 47 selective neurons preferred short,

whereas 39 neurons preferred the long category (binomial test,

p = 0.45)

Category-selective neurons robustly encoded the learned cat-

egories; their tuning fulfilled the hallmarks of categorical re-

sponses, i.e., a similar response to all members of the same

category and a change in activity across the category boundary

(Figures 2G and 2H). Both in the sample and the delay phase, a

significant difference between the neurons’ firing rates to the

preferred vs. the non-preferred categories was observed (Wil-

coxon signed-rank test, p < 0.001). No firing rate differences

were found within the preferred and non-preferred categories

for sample and delay (Friedman tests, p > 0.05), except for firing

rates within the non-preferred category of sample-selective neu-

rons (Friedman test, p = 0.02).

We calculated a category index to quantify the difference in the

firing rates of the category-selective neurons (analogous to

Freedman et al.37,53). We first derived the ‘‘within-category differ-

ence’’ (WCD) and ‘‘between-category difference’’ (BCD) from the

neurons’ firing rates (see STAR Methods). For the population of

selective neurons, the BCD was significantly higher than the

WCD, resulting in a shift of the data above the diagonal when

plotted against each other (Figures 2I and 2J) (Wilcoxon signed-

rank test, p < 0.001 for both sample [n = 65] and delay-selective

neurons [n = 86]). The WCD and BCD were then used to calculate

the category index—positive index values (max. +1) indicate

higher firing rate differences for stimuli of different (across) cate-

gories, whereas negative values (min. �1) signify higher differ-

ences for stimuli of the same (within) category (Figures 2K and

2L). For both the sample- and delay-selective category neurons,

the distributions were significantly shifted toward positive values

with means of 0.36 and 0.45, respectively (both one-sample t

tests, p < 0.001), indicating strongcategory codingof the selective



Figure 1. Task protocol, example stimuli, and behavioral performance in the two-category task

(A) Layout of the delayed match-to-category task with line-length stimuli. The crows had to respond whenever test 1 in 50% of the trials showed a line length that

matched the short-vs.-long length category of the sample. In the other 50% of the trials, test 1 was a category ‘‘nonmatch’’; here, the crow had to refrain from

responding until the second test stimulus (test 2) was shown, which was always a category ‘‘match.’’

(B) Example stimulus displays of the two-category task. Two stimulus sets (standard and control) with six line lengths eachwere used. Category boundary divided

the stimuli into short and long categories, with three line lengths each.

(C) Percent correct performance of crow 1 in the two-category task. Left: performance in trials with short sample stimuli. Right: performance in trials with long

sample stimuli. The values depict the percentage of how often the crows correctly judged the length of either test 1 or test 2 as belonging to the same category as

the line length of the sample stimulus. The circles indicate which exact line length was previously shown as the sample stimulus. Chance level is 50% (dashed

lines). Error bars (very small) represent SEM across the sessions.

(D) Same as in (C) but for crow 2.

(E) Behavioral performance of crow 1 for the two different stimulus sets (standard and control) individually. Left: performance in trials with short sample stimuli.

Right: performance in trials with long sample stimuli. Chance level is 50% (dashed lines). Error bars (very small) indicate SEM across the sessions.

(F) Same as in (E) but for crow 2.
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neurons. Category indices had a tendency to be larger during the

delay period (two-sample t test, p = 0.067).

Analysis of the population of category-selective neurons
To assess the activity of the category-selective neurons together

across time, we transformed their activity into state space. Here,

the activity of a population of neurons at every moment is repre-

sented as an n-dimensional vector in n-dimensional space. After

dimensionality reduction to the three most informative dimen-

sions (first three principle components [PCs]), the trajectories

in three-dimensional space represent the time course of the

neuronal activity to the different line lengths (see STAR

Methods). Sample-selective and delay-selective category
neurons were separately analyzed. Figures 3A and 3B depict

the resulting activity trajectories across trial time in state space.

While the absolute position of the color-coded trajectories repre-

senting the six line lengths is irrelevant, the distances between

trajectories reveal differences in population activity. Visual in-

spection shows that similar line lengths are encoded in an orderly

fashion by nearby trajectories. In addition, trajectories within a

category seem to be closer, whereas trajectories across the

two categories appear more distant.

We performed a cluster analysis to explore the potential clus-

tering of population activity according to the categories. We

calculated PC scores with average firing rates in the sample

and delay period separately (see STARMethods). The dispersion
Current Biology 33, 2151–2162, June 5, 2023 2153



Figure 2. Single-neuron activity from NCL in the two-category task

(A and B) Pattern of task-selectivity of the neurons with a selective interval in the sample (A) and delay phase (B). Top: time-resolved histograms depicting the

number of neurons for which factor ‘‘category’’ was significant at a given time point. Bottom: color-coded traces of the p values. Each line represents a neuron.

Dashed lines separate the periods of a trial by indicating sample onset (at 0 ms), sample offset (at 500 ms), and end of delay (1,500 ms).

(C–F) Responses of four single neurons selective to category long in the sample (C) and delay phase (D), respectively, and selective to category short in the early

delay (E) and later delay (F). Top panels depict dot-raster histograms (each line corresponds to a trial and each dot is an action potential). Bottom panels represent

the corresponding averaged and smoothed (200msGauss kernel, step size of 1ms) spike-density functions. Each line shows the time course of the activity for the

six different line lengths. Vertical dashed lines indicate sample onset, sample offset, and end of delay. The horizontal black line indicates the selective interval.

Tuning function insets show the average firing rate to each line length during this interval (error bars indicate SEM across the trials).

(G and H) Average normalized activity of category-selective neurons in the sample (G) and delay phase (H) in response to the individual line lengths of their

preferred and non-preferred category. The line lengths are arranged according to their distance from the category boundary. Error bars indicate SEM.

(I and J) Difference in firing rates in response to sample line lengths of the same (WCD) and different categories (BCD) for sample (I) and delay category-selective

neurons (J).

(K and L) Frequency distribution of category indices for sample (K) and delay category-selective neurons (L). Arrows indicate respective means.
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of the PC scores (only the first two PCs) for each trial (n = 180) in

PC-space is shown in Figures 3C and 3D. We first determined

the optimal number of clusters for the datasets by applying

two measures: the Cali�nski-Harabasz index (also termed ‘‘vari-

ance ratio criterion [VRC]’’),54 and the ‘‘gap criterion’’ that deter-

mines the most dramatic decrease in error measurement (the

‘‘elbow’’ or ‘‘gap’’) of different cluster numbers (see STAR

Methods).55 In the sample period, the Cali�nski-Harabasz index
2154 Current Biology 33, 2151–2162, June 5, 2023
(which is only defined for two or more clusters and thus less reli-

able) indicated two as the optimal cluster number, whereas the

gap value indicated only one cluster as an optimal description

of the population activity (Figure 3E). However, in the delay

period, both measures indicated two clusters as the optimal

cluster number (Figure 3F).

We then applied unsupervised k-means clustering to partition

all trials in state space (n = 180) into the previously determined



Figure 3. State space analysis of the selective neurons of the two-

category task

(A and B) Time course of neuronal activity to the different line lengths

throughout a trial (1, start sample phase; 2, start delay; 3, end of delay) of

neurons that were category selective in the sample (A) and delay phase (B).

(C and D) Dispersion of the PC scores of an example clustering repetition

during the sample (C) and delay phase (D). One dot corresponds to one trial,

color-coded by the different sample line lengths.

(E and F) Proportion of the optimal number of clusters based on gap value and

Cali�nski-Harabasz index, respectively, in the sample (E) and delay phase (F).

(G and H) Cluster assignment based on gap value of the same trials as in

(C) and (D), respectively. The optimal number of clusters was ‘‘one’’ in the

sample phase (G) and ‘‘two’’ in the delay phase (H). Red crosses indicate the

position of the cluster’s centroids.

ll
Article
optimal number of clusters.56 In the sample period, the indif-

ferent data comprised a single cluster (Figure 3G). In the delay

period, however, the clustering algorithm detected one cluster

for each of the two (short vs. long) length categories (Figure 3H).

However, with trial progression, activity in state space encodes
the relevant two length categories by two clusters that border

between the length categories.

Analysis of the entire neuron population
In thenext step,weexplored the category codingcapability of the

entire population of recorded neurons (n = 348), irrespective of

selectivity. We focused on the last 600 ms of the delay period in

which the crows particularly relied on category information to

solve the task. First, we calculated a correlation matrix to

compare the responses of the neurons with pairs of stimuli (Fig-

ure 4A). A correlation coefficient was calculated for each stimulus

combination, and its value is depicted as a color-coded tile in the

correlation matrix. The emerging correlation pattern shows that

the responses of all neuronsweremore similar towithin-category

stimuli than to across-category stimuli. The mean coefficient for

correlations for within-category stimuli was 0.76 and thus higher

compared with the mean coefficient of 0.63 for across-category

stimuli (two-sample t test, p < 0.001) (Figure 4B).

To explore the behavioral relevance of population activity for the

crows’ categorization performance, we calculated the correlation

coefficients for suitable neurons also in error trials in addition to

correct trials over the last 600 ms of the delay period (Figures 4C

and 4D). The correlation coefficients in correct trials differed signif-

icantly for this subset of neurons, with means of 0.77 and 0.62 for

stimuli of the same and different categories, respectively (two-

sample t test, p < 0.001). In error trials, however, no difference be-

tween within-category correlation coefficients (mean = 0.41) and

between-category correlation coefficients (mean = 0.39) was

found (two-sample t test, p = 0.70) (Figure 4E). This indicates

that the activity differences between categories that are lacking

in error trials are behaviorally relevant for the crows to group the

sample stimuli into the learned categories during correct trials.

Next, we used a population decoding approach to explore cat-

egorical information contained in the neuronal responses. We

trained a support vector machine (SVM) classifier with the firing

rates of the neuronswithin the last 600msof the delay.57 The clas-

sificationperformancewas then testedwitha subset of these firing

rates which were not used for training (Figure 4F). The classifier

grouped the firing rates with a high performance of 91.2%

(±0.9% SEM) into the correct categories. Additionally, we trained

an SVM classifier 3 times on different pairs of training stimuli to

test whether the firing to each of the six individual stimuli was pre-

dictive of the short vs. long categorization. For each classifier

training, we used the firing rates to one stimulus of each category

(S1/L3, S2/L2, and S3/L1, respectively) and then predicted the

category of the remaining four stimuli. The classifier was able to

predict the correct category at a mean performance of 77.9%

(±3.2% SEM) (Figure 4G). All training sets resulted in similarly

high classifier performance without performance differences be-

tween the tested cross-category line pairs (two-factor ANOVA,

p = 0.58; mean classification performance with S1/L3 as the

trainingset, 76.0%;withS2/L2, 83.0%;withS3/L1, 74.8%). Impor-

tantly, therewas no difference between the performance of stimuli

within the short and the long category (two-factor ANOVA, p =

0.52; mean prediction performance for stimuli of the short cate-

gory: 75.7% and long category: 80.2%). These decoding results

show that the neurons respond in a similar manner to all stimuli

of the same category but differently tomembers of the other cate-

gory, thus allowing a classifier to predict category membership.
Current Biology 33, 2151–2162, June 5, 2023 2155



Figure 4. Correlated activity to pairs of stimuli and classification probability of an SVMclassifier for the entire neuronal population in the two-

category task
(A) Correlation matrix to pairs of stimuli comparing the neuronal activity during the last 600ms of the delay. Each tile represents the correlation coefficient via color

code. Darker colors indicate higher correlation. The tiles along the diagonal represent the maximum correlation when comparing stimuli with themselves (r = 1.0).

(B) Mean correlation coefficient across all comparisons of stimuli within the same category and of different categories, respectively. Error bars represent SEM. ***:

p < 0.001.

(C and D) Correlation coefficients in correct (C) and error trials (D) for a subset of the neuronal population for which error trials could be analyzed.

(E) Mean correlation coefficients across comparisons of stimuli within the same category and of different categories in correct trials (left two bars) and error trials

(right two bars). Error bars represent SEM. ***: p < 0.001.

(F) Performance of an SVM classifier classifying the category of the sample stimulus after being trained on the firing rates of the entire neuronal population during

the last 600 ms of the delay.

(G) SVM classifier predictive performance to novel stimuli after classifier training on the firing rates to two other stimuli. Data for classifier training with S1 and L3

(left), S2 and L2 (middle), and S3 and L1 (right). Columns represent the proportion of how often a stimulus was assigned to the short category.
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Behavior in the three-category task
After collecting data in the two-category task, we retrained crow

1 on a three-category task to explore learning-related categori-

zation changes.We used the same line-length stimuli but applied

two category boundaries that resulted in the three length cate-

gories short, medium, and long (Figure 5A). The crow was able

to learn the new categories and performed above the 50%

chance level in each session (all binomial tests, p < 0.001). The

mean correct performance across all sessions was 83.1%

(±3.7% SEM, n = 58 sessions).

The crow showed similarly high performances for either stim-

ulus of each category and a sharp drop-off across the two cate-

gory boundaries (Figure 5B). As with the two-category task, the

crow performed best when the sample stimulus was S1 (95.0%±

0.5%SEM, Figure 5B, left). However, performance was also high

for the medium category which is the most difficult category

because both within-category stimuli are adjacent to a category

boundary (M1, 81.3% ± 0.9% SEM; M2, 75.1% ± 1.0% SEM;

Figure 5B, middle). The mean performance with standard and

control stimuli was 81.4% (±0.7% SEM) and 85.2% (±0.7%

SEM), respectively, and thus slightly better with stimuli of the

control set (paired t test, p < 0.001, Figure 5C). However, the

crow’s performance in each sessionwaswell above chance level

with both stimulus sets (all binomial tests, p < 0.001).
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Neuronal data in the three-category task
We recorded 336 single neurons while crow 1 was performing

the three-category task. Of these, 128 neurons (38.1%) were

category selective (47 neurons in the sample phase and 93 neu-

rons during the delay). Three category-selective neurons are

shown in Figures 5D–5F. The sample-selective neuron in Fig-

ure 5D was tuned to the long category. The other two delay-se-

lective example neurons preferred the medium category in the

middle of the delay (Figure 5E) and the long category toward

the end of the delay (Figure 5F), respectively. In the sample

phase, 14 neurons preferred a stimulus of the short category,

11 of the medium, and 22 of the long category. During the delay,

17 preferred short, 53 preferred medium, and 23 preferred long.

Analogous to the analysis of the two-category data, we assess

the activity of all selective neurons in the three-category task

together in state space (Figures 6A and 6B). In addition to the

orderly representation of adjacent line lengths, trajectories within

one of the categories seem to be closer, whereas trajectories

across categories appear more distant. We again performed

cluster analysis with PC scores (n = 180 trials) and separately

for the sample and delay periods (Figures 6C and 6D).

In the sample period, the Cali�nski-Harabasz index indicated

three as the optimal cluster number, whereas the gap value indi-

cated only two clusters as an optimal description of population



Figure 5. Example stimuli, behavioral per-

formance, and single-neuron activity in the

three-category task

(A) Example stimulus displays of the three-cate-

gory task. Two different stimulus sets (standard

and control) with six line lengths each were used.

The category boundaries divided the stimuli into

three categories (short, medium, and long), with

two line lengths each.

(B) Behavioral performance of crow 1 in the three-

category task. Left to right: performance in trials

with short, medium, and long sample stimuli,

respectively. Circles indicate which line length was

shown as the sample stimulus. Dashed lines

represent chance. Error bars (very small) represent

SEM across the sessions.

(C) Behavioral performance of crow 1 for the two

different stimulus sets (standard and control) indi-

vidually. Left to right: performance in trials with

short, medium, and long sample stimuli, respec-

tively. Layout as in (B).

(D) Category-selective neuron encoding the three

categories in the sample phase and preferring

category long. Layout as in Figures 2C–2F.

(E and F) Example category-selective neurons

during the delay, preferring the medium (E) and

long categories (F), respectively. Layout as in

Figures 2C–2F.
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activity (Figure 6E). However, in the delay period, both measures

indicated three as the optimal cluster number (Figure 6F). In the

sample period, k-means clustering partitioned the trials into the

previously determined two optimal clusters which mainly con-

sisted of the first shortest vs. the three longest line stimuli (Fig-

ure 6G). In the delay period, however, the clustering algorithm

detected three clusters correlating with the line lengths of the

short, medium, and long categories (Figure 6H). Thus, state

space activity later in the delay period encodes the relevant three

length categories by three clusters that border between the

trained length categories.

As before, we analyzed the category coding of the entire popu-

lation of recorded neurons (n = 278) and used again the activity in

the last 600msof thedelay period tocalculate a correlationmatrix.

After retraining crow 1, the correlation pattern now reflected the

new three categories (Figure 7A). The difference between the

mean correlation coefficient for stimuli within the same category

(0.80) and for correlations of stimuli across categories (0.59) was
Current
significant (Figure 7B) (two-sample t test,

p < 0.001). By contrast, no differences in

correlation coefficients were observed for

stimuli that belonged to adjacent cate-

gories (short vs. medium and medium vs.

long; mean = 0.57) or had a greater dis-

tance (short vs. long; mean = 0.62) (two-

sample t test, p = 0.06).

We tested whether the neuronal popula-

tion recorded during the three-category

task may still encode the now invalid two

categories of the original task. The mean

correlation coefficients for stimuli within

the original categories of the two-category
task compared with stimuli between the original two categories

were0.65and0.61, respectively, andwere indifferent (two-sample

t test, p = 0.44). This indicates that the population of neurons no

longer encoded the categories of the two-category task. As a con-

trol, we explored three-category coding in the original two-cate-

gory task and calculated the correlation analysis with the cate-

gories of the three-category task for the data recorded during

the two-category task (see Figure 4A). Here aswell, themean cor-

relation coefficients for stimuli within the same category (0.74) and

those between categories (0.67) were indifferent (two-sample t

test, p=0.12).Thus, thecorrelationdifferenceswithinandbetween

categories of the three-category task were not a chance event but

resulted from retraining with the new categories.

A subset of the neuronal population (n = 120 suitable neurons;

see STAR Methods) was used to analyze the correlation coeffi-

cients in error trials (Figures 7C and 7D). Although a higher cor-

relation coefficient for stimuli within the same category than for

stimuli across categories (0.82 and 0.56, respectively) was
Biology 33, 2151–2162, June 5, 2023 2157



Figure 6. State space analysis of the selective neurons of the three-

category task

(A and B) Course of neuronal activity in response to the different line lengths

throughouta trial (1, start samplephase; 2, start delay;3,endofdelay) for neurons

that were category selective in the sample phase (A) and during the delay (B).

(C and D) Dispersion of the PC scores of an example clustering repetition

during the sample period (C) and during the delay (D). One dot corresponds to

one trial, color-coded by the different sample line lengths.

(E and F) Proportion of the optimal number of clusters based on gap value and

Cali�nski-Harabasz index, respectively, in the sample phase (E) and during the

delay (F).

(G and H) Cluster assignment based on gap value of the same trials as in

(C) and (D), respectively. Here, the optimal number of clusters was two in the

sample phase (G) and three in the delay (H). Red crosses indicate the position

of the cluster’s centroids.
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observed in correct trials (two-sample t test, p < 0.001, Fig-

ure 7E), in error trials, no difference between the correlation co-

efficients for stimuli of the same category and stimuli across cat-

egories was detected (both 0.32, two-sample t test, p = 0.99).
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This again indicates that category-specific signals in the three-

category task had vanished during error trials, supporting the

behavioral relevance of the neurons’ responses.

Finally,weemployeddecodingpopulationanalyses irrespective

of single neurons’ category selectivity. We again trained an SVM

classifier using the firing rates of the last 600 ms of the delay and

tested its classification performance with a subset of firing rates

that were not used for training (Figure 7F). The classifier grouped

the firing rates correctly into the three categories with a high prob-

ability of 90.1% (±1.5% SEM). This indicates a robust representa-

tion of the three length categories by the random population of

NCL neurons.

DISCUSSION

We report that crows efficiently learned to apply a matching to

category rule based on short or long line length. We report three

major findings from recordings during task performance. First, a

substantial proportion of neurons encoded the category infor-

mation by showing large activity differences between length cat-

egories but similar responses to stimuli within each length cate-

gory. Second, after the retraining of a crow and testing with new

and more length categories (short, medium, and long), NCL

neuron activity had flexibly changed to now reflect these new

categories. Our data show malleable categorization capability

mediated by the flexible networks of the crow NCL that are remi-

niscent of findings in the PFC of monkeys.

Temporal dynamics of behaviorally relevant category
activity with trial time
The task design allowed us to compare length category selectivity

during the visual encoding phase (sample phase) and during

memorization (delay phase). During the two-category task, more

category-selective neurons, with stronger selectivity, were

observed during the delay compared with the sample period.

Moreover, behaviorally relevant activity clusters (derived from

state space) based on the population of category-selective neu-

rons only emerged during the delay period but were largely absent

during the sample period in both two-category and three-category

tasks. In addition, activity differences between length categories

(asmeasured by correlationmeasures) collapsed during the delay

period in error trials in both two-category and three-category

tasks. These results suggest that category-indifferent neural re-

sponses rendered the crows’ error-proneness.

Collectively, our data argue that the activity of NCL neurons is

relevant for the crows’ categorization performance, confirming

previous findings during numerical categorization.47,48 More-

over, the observed time course of category selectivity indicates

that the initial sensory and largely category-void encoding of

length stimuli became dynamically restructured along trial time.

Direct sensory length information in conjunction with conceptual

information (i.e., short, medium, and long categories) retrieved

from long-term memory sculptured NCL activity until the crows

have access to categorical representations at the end of the

delay period when they need this data to solve the task.

Mechanism of categorization
Mechanistically, the emergence and shaping of categorical tuning

could be implemented via broad inhibitory mechanisms.58 To pin



Figure 7. Correlated activity to pairs of stimuli and classification

probability of an SVM classifier for the entire neuronal population

in the three-category task

(A) Correlation matrix comparing the neuronal activity during the last 600ms of

the delay. Layout as in Figure 4A.

(B) Mean correlation coefficients across all comparisons of stimuli within the

same category and of different categories, respectively. Error bars represent

SEM. ***: p < 0.001.

(C and D) Correlation coefficients in correct (C) and error trials (D) for a subset

of the neuronal population for which error trials could be analyzed.

(E) Mean correlation coefficients across comparisons of stimuli within and

between categories in correct (left columns) and error trials (right columns).

Error bars represent SEM. ***: p < 0.001.

(F) Performance of SVM classifier trained on firing rates of the entire neuron

population during the last 600 ms of the delay. Layout as in Figure 4F.
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down inhibitory mechanisms, the major pallial cell types, putative

excitatory projection cells and inhibitory interneurons, have been

identified bymeans of waveform analyses of intra- and extracellu-

larly recorded action potentials.59–62 Waveform analyses and

segregation of putative excitatory projection and inhibitory inter-

neuronswere recentlyalsoaccomplished inNCLneuronsofcrows

discriminatingnumerosities. It turnedout thatputative inhibitory in-

terneurons showed stronger stimulus-evoked responses, shorter

response latencies, and broader numerosity tuning compared

with putative projection neurons.24 In addition, nearby and func-

tionally coupled putative excitatory projection neurons were syn-

chronously excited and exhibited similar numerosity tuning,

whereas coupled putative inhibitory interneurons and projection

neurons inhibited each other’s firing and showed inverse tuning

relative to each other.24 These data suggest an inhibitory
feedforward mechanism for the shaping of neurons tuned to nu-

merical categories in the crowNCL.24 Such amicrocircuit ensures

that only projection cells that respond to the correct category

remain active and control the animal’s response.

Category selectivity arising through reinforcement
learning
The length categories applied in the current task—first, short vs.

long, and later, short, medium, and long—had no congenital

origin and needed to be learned by the crows over time as the

result of trial-and-error reinforcement learning. Reinforcement

learning based on reward can refine functional connectivity be-

tween neurons63 and typically relies on dopamine signals64,65—

reward prediction error signals arising from thedopamine system

modulate reward-dependent plasticity in primates.66 Similar pro-

cesses may be at work in birds learning to categorize, as reward

prediction errors have also been observed in the avian NCL, a

pallial brain area that is characterized by strong dopaminergic

innervation.33,35,67 According to a cortical circuit model designed

for neuronal category learning, weak but systematic correlations

between trial-to-trial fluctuations of the firing rates and the

accompanying reward after appropriate behavioral choices

generate neurons that gradually become category selective.68

In thismodel, initially nonselective neurons that showfluctuations

that correlate with behavioral outcome developed categorical

tuning. Therefore, when a crow learns to respond appropriately

to length categories in order to receive a reward, such a mecha-

nism might suffice to produce category-selective NCL neurons

from originally untuned neurons. Alternatively, the NCL may

contain a special set of malleable category-tuned neurons that

change their boundaries with experience. In a previous study,

we reported that association learning exclusively recruited NCL

neurons that already represented previously established associ-

ations.69 Translated to categories, learning could cause the same

pool of neurons to respond to new category boundaries applied

to the same length stimulus space.

Category representations in crow NCL vs. primate PFC
The avian NCL is often said to be a functional equivalent of the

primate PFC. A comparison of the current data in the crow

NCL adds to this functional resemblance in the realm of learned

categorization. In primates, behaviorally relevant representa-

tions of learned categories have been studied extensively in

the PFC using delayedmatch-to-category tasks. In a seminal se-

ries of experiments, macaques were trained to categorize

morphed visual stimuli into arbitrary cat and dog cate-

gories.37–40,53,70 As expected for category selectivity, a large

proportion of PFC neurons encoded category information by ex-

hibiting significant activity differences between cat and dog cat-

egories but similar responses to stimuli within each cate-

gory.37–40,53,70 Moreover, although the monkeys learned new

category boundaries within the same stimulus space, PFC neu-

rons changed selectivity to now encode the new category

boundary, indicating the malleability of the PFC in representing

acquired categories.37–40,53,70

Beyond perceptual categories (such as cats and dogs), the

primate PFC is also equipped to represent more abstract learned

spatial categories comparable to those tested here in crows. In

the past, representations of abstract magnitude, such as the
Current Biology 33, 2151–2162, June 5, 2023 2159
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absolute71,72 and relative line length,73,74 the absolute75 and

relative spatial distance,76,77 or numerical quantity78,79 have

been reported in the macaque PFC. In one study, monkeys

had to learn to classify spatial proportions, i.e., the relation be-

tween the variable lengths of two horizontal lines, with propor-

tions ranging from 1:4 and 2:4 to 3:4 and 4:4.80 Here, PFC neu-

rons showed categorical proportion tuning to the four different

proportion categories, very similar to the three length categories

short, medium, and long reported here in crows.

These similarities in the flexibility of telencephalic associative

brain areas to represent abstract learned categories are remark-

able in the face of independent evolution of these brain areas in

mammalian and avian lineages.81 Compared with the mamma-

lian neocortex, the avian telencephalic integration centers origi-

nate from different pallial territories during embryology,82 show

distinct neural architectures,83 and have evolved classes of

excitatory and inhibitory pallial neurons that have no counterpart

in the mammalian neocortex.84–86 Despite all this independent

brain evolution, crows and monkeys seem to be equipped with

equivalent neuronal circuits that can flexibly represent abstract

learned magnitude categories.19,87
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andreas

Nieder (andreas.nieder@uni-tuebingen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request. This paper does not report original code. Any addi-

tional information required to re-analyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Two hand-raised adult male carrion crows (Corvus corone) from the institute’s breeding facility were used. The crows were 3 and 6

years old. They were housed in an indoor aviary in social groups. During the experiment, the crows were on a controlled feeding pro-

tocol and received their daily amount of food as reward during training and recording or, if necessary, after the sessions. Water was

available ad libitum during the experiments and in the aviary. All procedures were carried out according to the guidelines for animal

experimentation and approved by the responsible national authorities, the Regierungspr€asidium Tübingen, Germany.

METHOD DETAILS

Apparatus
The experiment was conducted in a darkened operant conditioning chamber. The crows were placed on a perch in front of a 15’’

touchscreen monitor (ART development MT1599-BS and ART development PS-150, respectively). Viewing distance to the screen

was 14 cm. The touchscreen was used only for stimulus presentation, as the crows responded by head movements.

Behavior and response of the crows were controlled by an infrared reflexive light system which was located above the crows and

registered the position of a reflector foil attached on top of the crows’ head. The crows initiated trials by keeping their heads still in the

center position in front of the touchscreenmonitor andwere required to keep the headwithin this position throughout the trial until the

target stimulus appeared.

The crows reported the detection of the target stimulus by briefly moving their heads (‘nodding’), which was again automatically

detected by the infrared reflexive light system. With every correct answer, a food reward (either birdseed pellets or mealworms
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(Tenebrio molitor larvae)) was given by the briefly illuminated feeder below the touchscreenmonitor. Auditory feedback was provided

by speakers (Lasmex S-03) located behind the touchscreen monitor. We used the CORTEX system (National Institute of Mental

Health) to run the experiment and collect behavioral data.

Behavioral protocol
The crows were trained to group horizontal line stimuli into learned categories according to their length (Figure 1A). The crows initi-

ated a trial by positioning their heads facing the screen whenever the go-stimulus (small white cross, 2x2 dva (degree of visual angle))

was shown. A click sound indicated that the correct position had been entered and the go-stimulus turned briefly (for 60ms) into a

circle before it vanished. This head position had to be maintained throughout the trial until the test phase. Premature head move-

ments aborted the ongoing trial which was then discarded.

After a 600 ms pre-sample phase in which only the grey background circle was shown, the sample stimulus was presented for

500 ms. Then the screen returned to the grey background circle for a delay of 1000 ms. In the subsequent test phase, the first

test stimulus (Test 1) appeared formax. 900ms. In 50%of the trials, Test 1 displayed a line length that belonged to the same category

as the sample stimulus (i.e. ‘‘match’’). In the other half of the trials, Test 1 was not member of the same category as the sample stim-

ulus (i.e. ‘‘nonmatch’’). The chance level of Test 1 or Test 2 being amatchwas therefore 50%. The crow indicated a category ‘‘match’’

by instantaneously nodding, i.e. moving its head out of the monitored center position.

A ‘‘nonmatch’’ stimulus required the crow to maintain head position and to refrain from responding until the subsequent second

test stimulus (Test 2) appeared which always belonged to the same category as the sample (a ‘‘match’’). A correct response to a

‘‘match’’ stimulus (either Test 1 or Test 2) led to a reward for the crow. A response to a ‘‘nonmatch’’ stimulus or no response to either

Test 1 or Test 2 aborted the trial and was considered as error trial and not rewarded. Within each session, all behaviorally relevant

parameters (i.e. sample line length, stimulus sets and match/nonmatch trials) were balanced and pseudo-randomly interleaved.

Stimuli
The line length stimuli were generated using MATLAB software. They consisted of a horizontal black line at random position within a

grey background circle (Figure 1B). Six different line lengths were used that were assigned to either two (first experiment) or three

different length categories (second experiment). The lengths were consecutive multiples of lengths of 2.6 dva ranging from 3.3

dva (shortest line) to 16.3 dva (longest line).

To ensure that the crows categorized length rather than the area or thickness of the lines, we used two interleaved sets of stimuli in

each session, a standard stimulus protocol and a control protocol. In the standard protocol, the thickness of the lines varied randomly

between 0.4 and 2.0 dva. In the control protocol, the black area of each linewas kept constant to 6.5 dva2 across the different lengths,

with the thickness of the shortest line being always 2 dva and thickness of the longest line always 0.4 dva. In addition, the sample and

the test images within a trial were never identical. New stimulus sets were generated for each session to prevent the crows from

memorizing visual patterns.

First, we trained both crows on the two-category task (Experiment 1). For that, one category boundary divided the six different line

lengths into two groups of three line lengths each. The ‘‘short’’ category included the lengths S1, S2 and S3; the ‘‘long’’ category

included L1, L2 and L3. Thereafter, we retrained crow 1 on the three length categories ‘‘short’’, ‘‘medium’’, and ‘‘long’’ (Experiment

2). To that aim, we divided the line lengths into three categories of two line lengths each. The absolute lengths of the lines remained

unaffected, i.e. the physical appearance of the stimuli stayed the same, only the category membership changed. The ‘‘short’’ cate-

gory still included the lengths S1 and S2, and the ‘‘long’’ category still contained the lengths L2 and L3 (now renamed as L1 and L2,

respectively). The former lengths S3 and L1 constituted the new ‘‘medium’’ category and in this context were renamed asM1 andM2,

respectively.

Surgery and neurophysiological recordings
The surgeries were performed while the animal was under general anesthesia with a mixture of ketamine (50 mg/kg) and xylazine

(5 mg/kg). The animals were placed in a stereotaxic holder. We targeted the dorsal part of the nidopallium caudolaterale

(NCLd)33,35,36 by performing a craniotomy at 5 mm anterior-posterior and 13 mmmedio-lateral on the right hemisphere. Two manual

micro drives containing four electrodes each (2MU, Alpha Omega Co.) and aminiature connector for the head stage were implanted.

After the surgery, the crows received an analgesic. A small holder for attaching the reflector of the light barrier and head-tracking

system, respectively, had been already implanted under the same conditions.

Each recording session started with adjusting the electrodes until a proper neuronal signal (of at least 3:1 signal to noise) was de-

tected on at least one channel (see also Figures 4A and 4B in Veit and Nieder,42 for an example recording trace). Neurons were not

preselected in the involvement of the task. Signal amplification, filtering, and digitizing of spike waveforms was performed using the

Plexon MAP system (Plexon Inc., Dallas, Texas). Spectral filtering of recordings was accomplished by a combined preamplifier filter

(150 Hz–8kHz, 1 pole low-cut, 3 pole high-cut) and main filter (250 Hz, 2-pole, low-cut filter). Amplitude amplifications were set indi-

vidually for different channels in the range of ca. 20,000x gain. Spike waveforms were sampled at a frequency of 40 kHz (one entry

every 25 ms) for a duration of 800 ms. Plexon’s offline Sorter was used to manually offline sort spikes into single-unit waveforms by

applying mainly principal component analysis. We recorded 52 sessions in crow 1 and 55 sessions in crow 2 performing the two-

category task, and 58 sessions in crow 1 performing the three-category task.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
The behavioral performance was measured as the percentage correct categorization of the sample line lengths, i.e. of how often the

crows correctly judged that the line lengths of the test stimuli (either Test 1 or Test 2) belonged to the same category as the length of

the sample stimulus. For each session we used a binomial test to verify that the ratio of correct answers was above the 50% chance

level (for both stimulus sets separately and combined).

Neuronal analysis
Analyses of category-selective neurons

For the neuronal analyses, we included all neurons which had an average firing rate of at least 1 Hz during the overall trial and were

recorded for at least 10 correct trials for each sample line length. First, we identified category-selective neurons. To that aim, we

analyzed the activity of the neurons in sliding windows of 200 ms length which were advanced by 10 ms steps, starting at sample

onset and ending 100 ms after delay offset (to account for the neurons’ response latency). In each window, we performed a com-

bination of two statistical tests on the neurons’ firing rates to determine category-selective neurons: First, we calculated a two-

factor ANOVA with category and stimulus protocol as main factors (criterion P < 0.01) to determine across-category selectivity.

Neurons were selected that showed a significant main effect for category but no effect for main factor protocol or interaction be-

tween main factors. Second, we additionally calculated Kruskal-Wallis tests to explore differential activity to within-category line

length. A category selective neuronwas supposed to show no response differences across stimuli within each category (criterion P

R 0.05). Neurons recorded in the two-category task were tested with two Kruskal-Wallis tests (for category ‘‘short’’: neuronal re-

sponses to sample stimuli S1 vs. S2 vs. S3, and for category ‘‘long’’: sample stimuli L1 vs. L2 vs. L3). Neurons recorded in the

three-category task were tested with three Kruskal-Wallis testes (‘‘short’’: neuronal responses to sample stimuli S1 vs. S2, ‘‘me-

dium’’: sample stimuli M1 vs. M2, ‘‘long’’: sample stimuli L1 vs. L2). If a neuron fulfilled all of these criteria, i.e., was selective to

category in the ANOVA but unselective in the Kruskal-Wallis tests over at least 11 consecutive windows (i.e. 300 ms in total), it

was termed ‘category-selective’.

A category selective interval was assigned to the sample period if it started no later than 100ms after sample offset. Later occurring

selective intervals were assigned to the delay period. If a neuron had more than one selective interval in the sample or delay period,

respectively, only the one with the smallest P-value for factor category according to the ANOVA was used for later analyses. The

preferred length category within a selective interval was defined as the category which contained the stimulus eliciting the highest

mean firing rate. To calculate the average neuronal activity of the category-selective neurons within the selective intervals (separately

for the sample and delay phase), each neuron’s mean firing rates to the six different line lengths were normalized by setting the high-

est firing rate to 100% and the lowest to 0%. These were then arranged according to their distance from the category boundary and

averaged across all neurons. Due to this definition of category selectivity, the preferred category is expected to be encoded by

normalized firing rates that are larger than 50% and maximally 100% (and vice versa for the non-preferred category). However,

the normalized firing rates to individual line length stimuli within a category are not part of the definition, which is why this measure

and the derived values are suitable to explore neuronal encoding similarities to individual stimuli within categories and coding differ-

ences to stimuli between categories, particularly at the category boundary.

We calculated a category index from the average firing rates of the category-selective neurons to the six different sample line

lengths analogous to Freedman et al.37,53 The ‘‘between category difference’’ (BCD) was defined as the absolute difference between

the average firing rate of a neuron to the sample stimuli adjacent to the category boundary (i.e. S3 vs. L1). For the ‘‘within category

difference’’ (WCD), we calculated the firing rate differences between all neighboring sample stimuli (to keep the distance between the

compared stimuli constant) that belong to the same category (i.e. S1 vs. S2, S2 vs. S3, L1 vs. L2 and L2 vs. L3) and then took themean

of these. From these firing rate differences, we calculated the category index by subtracting the WCD from BCD and dividing it by

their sum:

Catergory index = ðBCD � WCDÞ=ðBCD + WCDÞ:
It resulted in values between -1 and 1 with positive values indicating a higher difference between the firing rates to two sample

stimuli of different categories than between stimuli within the same category. Shifts of the category index distributions relative to

value 0 were tested with a one-sample t-test.

We used principle component analysis (PCA), to investigate how the activity of the category-selective neurons evolved during the

course of a trial. For the later purpose of clustering, we included all category-selective neurons with at least 30 correct trials for each

line length (two-category task: 54 out of 65 sample-selective neurons and 80 of 86 delay-selective neurons; three-category task: 41

out of 47 sample-selective neurons and 88 out of 93 delay-selective neurons). The neuronal activity in response to a certain stimulus

at a certain time point is represented as a n-dimensional vector in n-dimensional space, with each dimension corresponding to one

single neuron.

We used PCA to reduce the dimensionality of the population activity while capturing most of the information. For that, the neuronal

data for each trial was smoothed by a 200 ms Gauss kernel with a step size of 1 ms, and the mean firing rate to each line length was

calculated in bins of 100 ms (advanced in steps of 10 ms) and then neuron-wise z-scored. From this data, we created a population of

pseudo-simultaneously recorded neurons. We calculated the PC scores using the implemented pca function of MATLAB. To
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illustrate the trajectories of the change in neuronal activity, we used the first three principle components which formed a three-dimen-

sional subspace. These three principle components explained 47.2% of the neuronal covariance in the sample period, and 40.6% of

the covariance in the delay period of the two-category task. In the three-category task, the first three principle components explained

58.0% of the neuronal covariance of the neurons which were category-selective in the sample phase and 54.6% for the neurons

which were selective during the delay.

In a next step, we analyzed the sample and delay periods separately. As before, the neuronal activity was first smoothed by a

200msGauss kernel across the entire trial. Then, we calculated themean firing rate in each trial across a 600ms timewindow starting

at sample onset and reaching 100 ms into the delay for the neurons which were category-selective in the sample phase. For the neu-

rons that were selective during the delay, we averaged the firing rate across the last 900ms of the delay. Then, we randomly drew the

firing rates of 30 trials for each sample line length within the given analysis interval, z-scored these neuron-wise and calculated the PC

scores.

To evaluate the optimal number of clusters, we applied the unsupervised k-means clustering algorithm using the first two prin-

ciple components. We used two different criteria, the gap value and the Calinski-Harabasz index.54,55 The maximum possible

number of clusters was set to six. The Calinski-Harabasz index (also called variance ratio criterion) is a measure of how dense

the objects within a cluster are and howwell different clusters are separated. The optimal number of clusters is the one which yields

the highest value. The gap statistic compares the within cluster variation to its variation expected under the assumption of a refer-

ence null distribution.55 A high gap value for a certain number of clusters indicates a large difference from the uniform distribution.

These two measures indicated the optimal number of clusters based on the drawn trials. This was repeated 1000 times with newly

drawn trials. After that, we calculated the frequency of how often the different cluster numbers were assigned among across the

repetitions.

Population analyses

Population analyses were performed on the entire population of recorded neurons. All neurons with an average firing rate of at least

1 Hz and at least 30 correct trials for each sample line length entered the analysis without any pre-selection for category-selectivity

(two-category task: n = 348, three-category task: n = 278). We used the firing rates within a 600 ms fixed window at the end of the

delay (starting 400 ms after sample offset) to capture delay-activity which carries the category information needed to be available for

the subsequent test phase and at the same time exclude late sample-related responses.

A correlation matrix was created to visualize the firing rate differences between pairs of stimuli and to detect coding patterns. The

strength of the relationship between the firing rates to two stimuli was measured by the correlation coefficient r (deviation from the

regression line). For that, the firing rates of each neuron were normalized by subtracting the average baseline firing rate (measured

within 300ms before sample onset across all correct trials) and dividing by the respective standard deviation. The coefficients of each

correlation were represented as a tile in the correlation matrix. The tiles along the diagonal from lower left to upper right represent the

correlation of the stimuli with themselves (r = 1.0). The matrix is symmetric to the diagonal.

For quantification, we calculated the mean of the correlation coefficients for the relationships of stimuli which belong to the same

category and for stimuli of different categories. Regarding the data from the two-category task, correlations within the same category

were: S1 vs. S2, S1 vs. S3, S2 vs. S3, L1 vs. L2, L2 vs. L3 and L1 vs. L3 and correlations between different categories: S1 vs. L1, S1 vs.

L2, S1 vs. L3, S2 vs. L1, S2 vs. L2, S2 vs. L3, S3 vs. L1, S3 vs. L2 and S3 vs. L3. In the three-category task, correlations within the

same category were: S1 vs. S2, M1 vs. M2 and L1 vs. L2 and between different categories: S1 vs. M1, S1 vs. M2, S1 vs. L1, S1 vs. L2,

S2 vs. M1, S2 vs. M2, S2 vs. L1, S2 vs. L2, M1 vs. L1, M1 vs. L2, M2 vs. L1 andM2 vs. L2. The mean difference between these values

was statistically verified by a two-sample t-test.

To test whether the activity of the neuronal population is behaviorally relevant, we calculated the correlation coefficients also in

error trials (i.e. when the crow responded to the ‘‘nonmatch’’ stimulus or to neither of the two test stimuli). For that, we used all neu-

rons of the analyzed population which had additionally at least 3 error trials for each sample line length (two-category task: n = 172,

three-category task: n = 120). Baseline activity and respective standard deviation for firing rate normalization was measured in error

trials within 300 ms before sample onset. Further analysis was done equally as for correct trials.

Additionally, we tested how well a multi-class support vector machine (SVM) classifier categorizes the firing rates of the re-

corded neurons. We used the LIBSVM toolbox for MATLAB (version 3.24)57 with default parameters (multi-class classification,

radial basis function as kernel). We performed a 5-fold cross-validation with the firing rates of the neuronal population to the

six different sample line lengths within the last 600 ms of the delay. For that we randomly drew the firing rates of 30 trials of

each neuron for each sample line length and assigned the true category labels to them. Then the drawn set of firing rates was

normalized by z-scoring and then split into five equal groups. The classifier was trained with the firing rates of four fifth of the trials

(144 trials of each neuron, sample stimuli were balanced, i.e. 24 trials for each sample stimulus) and then tested with the remaining

one fifth (36 trials, i.e. 6 trials for each sample stimulus). This procedure was repeated five times so that each split of firing rates was

used once as the test set, resulting in one accuracy value per sample line length (percentage of correctly classified firing rates

across the five repetitions). Furthermore, we repeated the 5-fold cross-validation with 30 newly drawn trials for each sample

line length 1000 times. The resultant confusion matrix shows the averaged classification probability across the trial samplings

for the firing rates of each sample line length.

We finally used the SVM classifier to test whether the activity of the neurons to a single stimulus of each category of the two-cate-

gory task can be used to predict the correct category of firing rates to the remaining stimuli which were not used for training. To that

aim, we used three different sets of training and testing stimuli. First, we trained the classifier using the firing rates to the stimuli S1 and
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L3 (most distant from the category boundary) and predicted the category of the stimuli S2, S3, L1 and L2. Next, we used the stimuli S2

and L2 for classifier training and S1, S3, L1 and L3 for the prediction and finally, S3 and L1 (adjacent to the category boundary) were

used for training and S1, S2, L2 and L3 as prediction stimuli. For the classifier training and testing, we randomly drew the firing rates of

30 trials per line length and normalized these by z-scoring. Then we calculated the percentage of how often the classifier predicted

that the test firing rates belong to the ‘‘short’’ category. This was repeated 1000 times with newly drawn firing rates. The results were

then averaged across the repetitions.
Current Biology 33, 2151–2162.e1–e5, June 5, 2023 e5


	Categorical representation of abstract spatial magnitudes in the executive telencephalon of crows
	Introduction
	Results
	Behavior
	Neuronal data
	Analysis of the population of category-selective neurons
	Analysis of the entire neuron population
	Behavior in the three-category task
	Neuronal data in the three-category task

	Discussion
	Temporal dynamics of behaviorally relevant category activity with trial time
	Mechanism of categorization
	Category selectivity arising through reinforcement learning
	Category representations in crow NCL vs. primate PFC

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Subjects

	Method details
	Apparatus
	Behavioral protocol
	Stimuli
	Surgery and neurophysiological recordings

	Quantification and statistical analysis
	Behavioral analysis
	Neuronal analysis
	Analyses of category-selective neurons
	Population analyses




	CURBIO19296_proof_v33i11.pdf

