This lecture

- Discuss the plotting exercise on Mas Rabassers de Dalt
- Look at folding related to shear zones
- Show an example of the application of new theory: Cap de Creus
- Another exercise

Mas Rabassers de Dalt (Spain)
\square Metagreywackes and metapelites Pegmatite
Quartzite
分 Farmhouse ruins
<1 (Mas Rabassers de Dalt)
-Trace of the main foliation
y S_{0-1} foliation orientation

- S_{2} foliation orientation
> S_{3} foliation orientation
\nearrow Fold axis (mainly D_{3})

Mas Rabassers de

 Dalt (Spain)- Folded main foliation $\left(\mathrm{S}_{01}\right)$
- S_{2} indicates second deformation
- Dextral D_{3} shear zones

Trace of the main foliation
y S_{0-1} foliation orientation

- S_{2} foliation orientation
- S_{3} foliation orientation
$\not \subset$ Fold axis (mainly D_{3})

S_{3} foliation

- Most S_{3} strike NW-SE
- (one outlier)
- Mean shear zone orientation is $051 / 55$

S_{3} foliation

- Most S_{3} strike NW-SE
- (one outlier)
- Mean shear zone orientation is $051 / 55$

Fold axes $\left(D_{3}\right)$

- Mean fold axis lies in plane of shear zones
- Relationship to shearing?

Second foliation $\left(S_{2}\right)$

- S_{2} foliation forms great circle
- Folding $\left(\mathrm{D}_{3}\right)$ around $36 \rightarrow 022$

First foliation and bedding $\left(S_{01}\right)$

- S_{01} foliation forms rough
- Much spread: 2x deformed
- Folding (? D_{3}) around

Summary

Folding related to D_{3} shearing?

- Mean $\mathrm{S}_{3}=051 / 55$
- Mean D_{3} fold $=36 \rightarrow 348$
- S_{2} fold axis $=36 \rightarrow 022$
- S_{01} fold axis $=37 \rightarrow 003$
 great circle $37 \rightarrow 003$

Is fold in south also D_{3} fold?

- Fold axis $=46 \rightarrow 004$
- Close to general fold axis $(36 \rightarrow 348)$ in plane of D_{3} shear zones

Shear zone-related folds

- Plot an EW-striking, vertical, dextral shear zone in your stereonet
- Stretching direction is horizontal
- What are the XYZ-directions of the incremental strain ellipsoid?
- Shear strain is 2
- Draw the Mohr circle for strain
- Plot the XYZ-directions of the finite strain ellipsoid
- Plot the finite orientations of the planes with original orientation: 270/90; 215/90; 215/45

Analysis of the Puig Culip area

- Folded S_{01} (turbidites)
- S_{2} crenulation cleavage

An application at Cap de Creus

Strain gradient on Puig Culip

Strain gradient on Puig Culip

- S_{01} rotates from subvertical NS-striking towards steeply NNWdipping

Strain gradient on Puig Culip

Strain gradient on Puig Culip

- S_{2} rotates from subvertical NW-dipping towards steep N -dipping

Interpretation of deformation

- Model A: 3 events
- D_{1} isoclinal folding
- D_{2} S-shaped folds $+\mathrm{S}_{2}$ cleavage
- D_{3} dextral shearing
- Model B: 2 events
- D_{1} isoclinal folding
- D_{2} dextral simple shear with shortening of S_{01}, forming folds and S_{2} cleavage. L_{2} fold axes and S_{2} rotate with increasing strain

Testing model B: only 2 events

- What is the orientation of the shear zone?
- Fold axes of S_{01} and S_{2} very close
- Not accurate enough with large spread in data

Fold axis rotate towards fabric attractor

- The fabric attractor (FA) is the intersection between the shear plane and the trend of the rotating L_{2} fold axis

Draw isogons: strike contours

- Isogons define the strike of the shear zone
- The shear zone strikes 105°
- This gives $\mathbf{S}_{\text {sh }}=015 / 67$

Rotate all data to suitable orientation

- All data have been rotated to make
- Shear plane vertical and EW-striking
- Fabric attractor horizontal

S_{01} poles

S_{2} poles

L_{2} fold axes

XY-plane of incremental strain ellipsoid

Compare low- and high-strain $\mathbf{S}_{\mathbf{0 1}}$

Compare low- and high-strain $\mathrm{S}_{\mathbf{0 1}}$

How does this all fit with $\mathbf{S}_{\mathbf{2}}$?

Interpretation of deformation events

- D_{2} folding
- Formation of steep NE -striking S_{2}
- Folds with sub-vertical fold axes

But: original $\mathrm{S}_{\mathbf{2}}$ does not lie in XY-plane

Strain analysis in field

An example

- A shear zone $\left(\mathrm{S}_{\mathrm{SH}}\right)$ offsets bedding $\left(\mathrm{S}_{0}\right)$
- Bedding outside shear zone: $\mathrm{S}_{0}=224 / 34$
- Bedding inside shear zone: $\mathrm{S}_{0}{ }^{\prime}=292 / 78$
- Stretching lineation in $\mathrm{S}_{\mathrm{SH}}: \mathrm{L}_{\text {str }}=37 \rightarrow 253$
- The bedding inside the shear zone has folds
- Orientation of fold axis: $\mathrm{F}=46 \rightarrow 217$
- Plot all the data
- What are the orientations of the principal stresses?
- What is the amount of strain in the shear zone?
- What was the original orientation of the folds?

